По характеру изменения скоростей во времени движение жидкости бывает установившееся и неустановившееся.

Метод Эйлеразаключается в рассмотрении всей картины движения жидкости в различных точках пространства в данный момент времени. Этот метод позволяет определить скорость движения жидкости в любой точке пространства в любой момент времени, т. е. характеризуется построением поля скоростей и поэтому широко применяется при изучении движения жидкости. Недостаток метода Эйлера в том, что при рассмотрении поля скоростей не изучается траектория отдельных частиц жидкости.

Метод Лагранжазаключается в рассмотрении движения каждой частицы жидкости, т. е. траектории их движения. Из-за значительной трудоемкости этот метод не получил широкого распространения.

Трудность изучения законов движения жидкости обусловливается самой природой жидкости и особенно сложностью учета касательных напряжений, возникающих вследствие наличия сил трения между частицами. Поэтому изучение гидродинамики, по предложению Л. Эйлера, удобнее начинать с рассмотрения невязкой (идеальной) жидкости, т. е. без учета сил трения, внося затем уточнения в полученные уравнения для учета сил трения реальных жидкостей.

Кинематика жидкости обычно в гидравлике рассматривается совместно с динамикой и отличается от нее изучением видов и кинематических характеристик движения жидкости без учета сил, под действием которых происходит движение, тогда как динамика жидкости изучает законы движения жидкости в зависимости от приложенных к ней сил.

Полученное выражение носит название основного уравнения гидростатики.

Во-первых, из основного уравнения гидростатики следует, что для любой точки жидкости в состав величины давления входит P0 - давление, которое приложено к граничной поверхности жидкости извне. Эта составляющая одинакова для любой точки жидкости. Поэтому из основного уравнения гидростатики следует закон Паскаля, который гласит: давление, приложенное к граничной поверхности покоящейся жидкости, передаётся всем точкам этой жидкости по всем направлениям одинаково. Следует подчеркнуть, что давление во всех точках не одинаково. Одинакова лишь та часть (составляющая), которая приложена к граничной поверхности жидкости. Закон Паскаля – основной закон, на основе которого работает объёмный гидропривод, применяемый в абсолютном большинстве гидросистем технологических машин.

Вторым следствием является тот факт, что на равной глубине в покоящейся жидкости давление одинаково. В результате можно говорить о поверхностях равного давления. Для жидкости, находящейся в абсолютном покое или равномерно движущейся, эти поверхности – горизонтальные плоскости. В других случаях относительного покоя, которые будут рассмотрены ниже, поверхности равного давления могут иметь другую форму или не быть горизонтальными. Существование поверхностей равного давления позволяет измерять давление в любой точке жидкости.

Гидродинамика — это раздел гидравлики, изучающий законы механического движения жидкости и ее взаимодействия с неподвижными и подвижными поверхностями. Основная задача гидродинамики: определение гидродинамических характеристик потока, таких как гидродинамическое давление, скорость движения жидкости, сопротивление движению жидкости, а также изучение их взаимосвязи.

Жидкость в гидравлике рассматривается как непрерывная среда, сплошь заполняющая некоторое пространство без образования пустот. Причины, вызывающие ее движение, — внешние силы, такие, как сила тяжести, внешнее давление и т. д. Обычно при решении задач гидродинамики этими силами задаются. Неизвестные факторы, характеризующие движение жидкости, — это внутреннее гидродинамическое давление (по аналогии с гидростатическим давлением в гидростатике) и скорость течения жидкости в каждой точке некоторого пространства. Причем гидродинамическое давление в каждой точке — функция не только координат данной точки, как это было с гидростатическим давлением, но и функция времени t, т. е. может изменяться и со временем.

Основной задачей этого раздела гидравлики является определение следующих зависимостей скорости u и давления P в каждой точке потока жидкости, которые являются соответствующими функциями времени t и координат x,y,z:

и

.

Существует два метода изучения движения жидкости: метод Ж. Лагранжа и метод Л. Эйлера.

При перемещении жидкости силу давления, отнесенную к единице площади, рассматривают как напряжение гидродинамического давления, подобно напряжению гидростатического давления при равновесии жидкости. Как и в гидростатике, вместо термина «напряжение давления» используют выражение «гидродинамическое давление», или просто «давление».