Числа Рейнольдса, Фруда, Эйлера, Вебера
Понятие о подобных потоках и критериях подобия
Установление зависимости интересующей величины от системы выбранных определяющих факторов может выполняться двумя путями: аналитическим, основанным на законах механики и физики, и экспериментальным. Первый путь применим лишь для ограниченного числа задач и при том обычно лишь для упрощённых моделей явлений.
Другой путь, экспериментальный, в принципе может учесть многие факторы, но он требует научно обоснованной постановки опытов, планирования эксперимента, ограничения его объёма необходимым минимумом и систематизацией результатов опытов. При этом должно быть обосновано моделирование явлений.
Эти задачи позволяет решать так называемая теория гидродинамического подобия, т.е. подобия потоков несжимаемой жидкости.
Гидродинамическое подобие складывается из трёх составляющих: геометрического подобия, кинематического и динамического.
Геометрическое подобие представляет собой пропорциональность сходственных размеров и равенство соответствующих углов. В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т.е. подобие русел (или каналов).
Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей. Из кинематического подобия вытекает геометрическое подобие линий тока. Очевидно, что для кинематического подобия требуется геометрическое подобие русел.
Динамическое подобие - это пропорциональность сил, действующих на сходственные объёмы в кинематически подобных потоках и равенство углов, характеризующих направление этих сил.
Совокупность параметров, определяющих какой-либо гидродинамический процесс, можно рассматривать как конкретное решение дифференциальных уравнений этого процесса. Ему соответствуют вполне определённые начальные и граничные условия. Они представляют собой зависимости или константы, определяющие физические параметры в начальный момент и на границах во время движения. Следовательно, не только уравнения процесса, но также безразмерные формы начальных и граничных условий (условий однозначности) в механически подобных потоках должны быть одинаковыми. Имея это в виду, запишем уравнения Навье-Стокса и приведём их к безразмерному виду, для чего выберем характерные физические параметры L, V, T, P, F0 (если F - cила тяжести, то в качестве F0 удобно взять ускорение g свободного падения) и отнесём к ним соответствующие размерные величины:
Для плотности и вязкости, которые считаем постоянными, характерные величины не выбираем, так как они сами ими являются. Примем также во внимание размерность дифференциальных операторов и grad:
;
Векторное уравнение Навье-Стокса можно представить в виде
(1.48)
Чтобы придать этому уравнению безразмерный вид, разделим все его члены на коэффициент при конвективном ускорении. Получим
(1.49)
где дифференциальные операции выполняются по безразмерным переменным. В этом уравнение все члены, включая комбинации характерных параметров, безразмерны. Для всех динамических подобных потоков оно должно быть одинаковым, а следовательно, группы потоков были одинаковыми, т.е.
(1.50)
Входящие в условия (1.50) безразмерные комплексы играют роль критериев подобия и имеют следующие собственные наименования:
- число Фруда; - число Эйлера; - число Рейнольдса; - число Струхала.
Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине)
Потери удельной энергии (напора), или, как их часто называют, гидравлические потери, зависят от формы, размеров русла, скорости течения и вязкости жидкости, а иногда и от абсолютного давления в ней. Вязкость жидкости, хотя и является первопричиной всех гидравлических потерь, но далеко не всегда оказывает существенное влияние на их величину.
Гидравлические потери обычно разделяют на местные потери и потери на трение по длине.
Местные потери энергии обусловлены так называемыми местными гидравлическими сопротивлениями (рис 1.18), т.е. местными изменениями формы и размеры русла, вызывающими деформацию потока. При протекании жидкости через местные сопротивления изменяется её скорость и обычно возникают крупные вихри. Последние образуются за местом отрыва потока от стенок и представляют собой области, в которых частицы жидкости движутся в основном по замкнутым кривым или близким к ним траекториям.
рис. 1.18 Пример местных гидравлических сопротивлений. |
Местные сопротивления напора определяются по формуле следующим образом:
(1.51)
или в единицах давления
(1.52)
Выражение (1.5.4) часто называют формулой Вейсбаха. В ней V - средняя по сечению скорость в трубе, в которой установлено данное местное сопротивление.
Потери на трение по длине - это потери энергии, которые в чистом виде возникают в прямых трубах постоянного сечения, т.е. при равномерном течении, и возрастают пропорционально длине трубы. Рассматриваемые потери обусловлены внутренним трением в жидкости, а потому имеют место не только в шероховатых, но и в гладких трубах.
Потерю напора на трение можно выразить по общей формуле для гидравлического потерь, т.е.
(1.53)
или
(1.54)