Заключительные стадии репродукции вирусов. Сборка и выход вирусов из клетки

Лекция 6

РЕПЛИКАЦИЯ

Репликацией называется синтез молекул нуклеиновой кислоты, гомологичных геному. В клетке происходит репликация ДНК, в результате которой образуются дочерние двунитчатые ДНК. Репликация происходит на расплетенных участках ДНК и идет одновременно на обеих нитях от 5'-конца к З'-концу. Поскольку две нити ДНК имеют противоположную полярность, а участок репликации («вилка») движется в одном направлении, одна цепь строится в обратном направлении отдельными фрагментами, которые назы­ваются фрагментами Оказаки (по имени ученого, впервые предложившего такую модель). После синтеза фрагменты Оказаки «сшиваются» лигазой в единую нить.

Репликация ДНК осуществляется ДНК-полимеразами. Для начала репликации необходим предварительный синтез короткого участка РНК на матрице ДНК, который называется затравкой. С затравки начинается синтез нити ДНК, после чего РНК быстро удаляется с растущего участка.

Репликация вирусных ДНК. Репликация генома ДНК-содержащих вирусов в основном катализируется клеточными фрагментами и механизм ее сходен с механизмом репли­кации клеточной ДНК.

Каждая вновь синтезирован­ная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити. Та­кой механизм репликации назы­вается полуконсервативным.

У вирусов, содержащих коль­цевые двунитчатые ДНК (паповавирусы), разрезается одна из нитей ДНК, что ведёт к раскру­чиванию и снятию супервитков на определенном участке моле­кулы.

При репликации однонитчатых ДНК (семейство парвовирусов) происходит образование двунитчатых форм, которые представляют собой промежуточные репликативные формы.

Репликация вирусных РНК. В клетке нет ферментов, спо­собных осуществить репликацию РНК. Поэтому ферменты, участ­вующие в репликации, всегда вирусспецифические. Реплика­цию осуществляет тот же фер­мент, что и транскрипцию; репликаза является либо модифи­цированной транскриптазой, ли­бо при репликации соответствующим образом модифицируется матрица.

Репликация однонитчатых РНК осуществляется в два этапа: вначале синтезируются комплементарные геному нити, которые в свою очередь становятся матрицами для синтеза копий генома. У «минус-нитевых» вирусов первый этап репликации — образование комплементарных нитей сходен с процессом транскрипции. Однако между ними есть существенное отличие: если при транскрипции считываются определенные участки генома, то при репли­кации считывается весь геном. Например, иРНК парамиксовирусов и рабдовирусов являются короткими молеку­лами, комплементарными разным участкам генома, а иРНК вируса гриппа на 20—30 нуклеотидов короче каждого фрагмента генома. В то же время матрицы для репликации являются полной комплементарной последовательностью генома и называются антигеномом. В зараженных клетках существует механизм переклю­чения транскрипции на репликацию. У «минус-нитевых» вирусов этот механизм обусловлен маскировкой точек терминации транскрипции на матрице генома, в результате чего происходит сквозное считывание генома. Точки терминации маскируются одним из вирусных белков.

При репликации растущая «плюс-нить» вытесняет ранее синтезированную «плюс-нить» либо двухспиральная матри­ца консервируется. Более распространен первый механизм репликации.

Репликативные комплексы. Поскольку образующиеся нити ДНК и РНК некоторое время остаются связанными с матрицей, в зараженной клетке формируются реплика­тивные комплексы, в которых осуществляется весь процесс репликации (а в ряде случаев также и транскрипции) генома. Репликативный комплекс содержит геном, репликазу и связанные с матрицей вновь синтезированные цепи нуклеиновых кислот. Вновь синтезированные геномные молекулы немедленно ассоциируются с вирусными белками, поэтому в репликативных комплексах обнару­живаются антигены. В процессе репликации возникает частично двунитчатая структура с однонитчатыми «хвоста­ми», так называемый репликативный предшественник (РП).

Репликативные комплексы ассоциированы с клеточ­ными структурами либо с предсуществующими, либо вирусиндуцируемыми. Например, репликативные комплек­сы пикорнавирусов ассоциированы с мембранами эндоплазматической сети, вирусов оспы — с цитоплазматическим матриксом, репликативные комплексы аденовирусов и вирусов герпеса в ядрах находятся в ассоциации со вновь сформированными волокнистыми структурами и связаны с ядерными мембранами. В зараженных клетках может происходить усиленная пролиферация клеточных структур, с которыми связаны репликативные комплексы, или их формирование из предсуществующего материала. Напри­мер, в клетках, зараженных пикорнавирусами, происходит пролиферация гладких мембран. В клетках, зараженных реовирусами, наблюдается скопление микротрубочек; в клетках, зараженных вирусами оспы, происходит формиро­вание цитоплазматического матрикса.

В репликативных комплексах одновременно с синтезом геномных молекул осуществляется транскрипция и происходит сборка нуклеокапсидов и сердцевин, а при некоторых инфекциях — и вирусных частиц. О сложной структуре репликативных комплексов говорит, например, такой состав репликативного комплекса аденовирусов: реплицирующиеся ДНК, однонитчатые ДНК, однонитчатые РНК, ферменты репликации и транскрипции, структурные и неструктурные вирусные белки и ряд клеточных белков.

Регуляция репликации. Вновь образованная молекула геномной РНК может быть использована различным образом. Она может ассоциироваться с капсидными белками и войти в состав вириона, служить матрицей для синтеза новых геномных молекул, либо — для об­разования иРНК, наконец, у «плюс-нитевых» вирусов она может выполнять функции иРНК и связываться с рибосомами. В клетке существуют механизмы, регу­лирующие использование геномных молекул. Регуляция идет по принципу саморегуляции и реализуется путем взаимодействия вирусных РНК и белков благодаря возможности белокнуклеинового и белок-белкового узнавания. Например, роль терминального белка пикорнавирусов заключается в запрещении трансляции иРНК и отборе молекул для формирования вирионов. Белок, связывающийся с 5'-концом геномной РНК, в свою очередь узнается капсидными белками и служит сигналом для сборки вирусной частицы с участием данной молекулы РНК. По тому же принципу отбираются геномные молекулы РНК у «минус-нитевых» вирусов: к З'-концу геномных РНК присоединяется молекула капсидного вирусного белка, к которой подстраиваются другие белковые субъединицы в результате белок-белкового узнавания, и такая молекула РНК войдет в состав вириона или послужит матрицей для репликации. Для переключения ее на транскрипцию должен возникнуть запрет белок-нуклеинового взаимодействия. В репликации ДНК аденовирусов участвует молекула белка, которая связывается с концом вирусной ДНК и необходима для начала репликации. Таким образом, для начала репликации необходим синтез вирусных белков: в при­сутствии ингибиторов белкового синтеза отсутствует переключение транскрипции на репликацию.

СБОРКА ВИРУСНЫХ ЧАСТИЦ

Синтез компонентов вирусных частиц в клетке разоб­щен и может протекать в разных структурах ядра и цитоплазмы. Вирусы, репликация которых проходит в ядрах, условно называют ядерными. В основном это ДНК-содержащие вирусы: аденовирусы, паповавирусы, парвовирусы, вирусы герпеса. Вирусы, реплицирующиеся в цитоплазме, называют цитоплазматическими. К ним относятся из ДНК-содержащих вирус оспы и большинство РНК-содержащих вирусов, за исключением ортомиксовирусов и ретровирусов. Однако это разделение весьма относительно, потому что в репродукции тех и других вирусов есть стадии, протекающие соответственно в цитоплазме и ядре.

Внутри ядра и цитоплазмы синтез вирусспецифических молекул также может быть разобщен. Так, например, синтез одних белков осуществляется на свободных полисомах, а других — на полисомах, связанных с мембранами. Вирусные нуклеиновые кислоты синтезиру­ются в ассоциации с клеточными структурами вдали от полисом, которые синтезируют вирусные белки. При таком дисъюнктивном способе репродукции образо­вание вирусной частицы возможно лишь в том случае, если вирусные нуклеиновые кислоты и белки обладают способностью при достаточной концентрации узнавать друг друга в многообразии клеточных белков и нуклеи­новых кислот и самопроизвольно соединяться друг с другом, т. е. способны к самосборке.

В основе самосборки лежит специфическое белок-нуклеиновое и белок-белковое узнавание, которое может происходить в результате гидрофобных, солевых и водородных связей, а также стерического соответствия. Белок-нуклеиновое узнавание ограничено небольшим участком молекулы нуклеиновой кислоты и определяется уникальными последовательностями нуклеотидов в некодирующей части вирусного генома. С этого узнавания участка генома вирусными капсидными белками начинается процесс сборки вирусной частицы. Присоединение осталь­ных белковых молекул осуществляется за счет специфичеческих белокбелковых взаимодействий или неспецифиче­ских белокнуклеиновых взаимодействий.

В связи с разнообразием структуры вирусов животных разнообразны и способы формирования вирионов, однако можно сформулировать следующие общие принципы сборки.

1. У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато. Сначала форми­руются нуклеокапсиды или сердцевины, с которыми взаимодействуют белки наружных оболочек.

2. Сборка сложно устроенных вирусов (за исключе­нием сборки вирусов оспы и реовирусов) осуществляется на клеточных мембранах. Сборка ядерных вирусов проис­ходит с участием ядерных мембран, сборка цитоплазматических вирусов — с участием мембран эндоплазматической сети или плазматической мембраны, куда независимо друг от друга прибывают все компоненты вирусной части­цы.

3. У ряда сложно устроенных вирусов существуют специальные гидрофобные белки, выполняющие функции посредников между сформированными нуклеокапсидами и вирусными оболочками. Такими белками являются матриксные белки у ряда «минус-нитевых» вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов).

4. Сборка нуклеокапсидов, сердцевин, провирионов и вирионов происходит не во внутриклеточной жидкости, а в специальных структурах, предсуществующих в клетке или индуцированных вирусом («фабриках»).

5. Сложно устроенные вирусы для построения своих частиц используют ряд элементов клетки-хозяина, например липиды, некоторые ферменты, у ДНК-геномного SV40 — гистоны, у оболочечных РНК-геномных виру­сов — актин, а в составе ареновирусов обнаружены даже рибосомы. Клеточные молекулы несут определенные функции в вирусной частице, однако включение их в вирион может явиться и следствием случайной контами­нации, как, например, включение ряда ферментов клеточ­ных оболочек или клеточных нуклеиновых кислот.

Сборка РНК-содержащих вирусов. Сборка просто устроенных РНК-содержащих вирусов заключается в ассоциации вирусного генома с вирусными капсидными белками с образованием нуклеокапсида.

У сложно устроенных РНК-содержащих вирусов про­цессы сборки нуклеокапсидов, сердцевин и зрелых вирио­нов обычно разобщены. Нуклеокапсиды мигрируют к месту сборки вирусных частиц — плазматической мембране (или мембранам эндоплазматическои сети) и упорядочение выстраиваются под участками мембран, с наружной стороны которых уже встроены вирусные суперкапсидные белки. Сборка заключается в том, что участки, содержащие гликопротеиды с примыкающими к ним нуклеокапсидами, постепенно выпячиваются через модифицированную клеточную мембрану. В результате выпячивания образуется «почка», содержащая нуклеокапсид и оболочку с суперкапсидными белками. «Почка» отделяется от клеточной мембраны с образо­ванием свободной вирусной частицы. Такой способ формирования вирусных частиц называется почкованием. Почкование может происходить через плазматическую мембрану клетки в наружную среду, как у ортомиксови­русов, парамиксовирусов, рабдовирусов и альфа-вирусов, либо через мембраны эндоплазматическои сети в вакуоли, как у аренавирусов и буньявирусов, В основе выпячивания почки через мембрану лежат обычные клеточные процессы, направленные на отторже­ние непригодного для клетки материала и обновление мембран. Участок будущей почки содержит фиксирован­ный нуклеокапсид, ассоциированный с суперкапсидными белками, но движение мембранных липидов продолжается в силу их текучести, липиды обволакивают будущую почку и вместе с ними из «почки» вытесняются клеточные мембранные белки. В результате этого движения проис­ходит выбухание «почки» над клеточной мембраной. Механизм образования «почки» объясняет, почему в составе почкующихся вирусов не содержится клеточных мембранных белков.

Все вирусные компоненты — нуклеокапсиды и супер­капсидные белки прибывают к месту сборки незави­симо друг от друга. Первыми к месту сборки прибывают суперкапсидные белки. Обычно этими белками являются гликопротеиды, которые синтезируются в полисомах, связанных с мембранами, и через шероховатые, а затем гладкие мембраны в результате слияния с ними везикул комплекса Гольджи транспортируются на наружную поверхность плазматических мембран или остаются в составе везикул.

Включение гликопротеидов в определенные зоны кле­точных мембран приводит к модификациям мембран. Нуклеокапсид узнает эти участки и подходит к ним с внутренней стороны липидного бислоя. Узнавание осу­ществляется с помощью одного из двух механизмов, 1) нуклеокапсид взаимодействует с участком гликопротеида, пронизывающим клеточную мембрану и вышедшим на ее внутреннюю поверхность. Такой ме­ханизм имеет место у альфа-вирусов; гидрофобный фраг­мент гликопротеида Е1 проникает через липидный слой на его внутреннюю поверхность, и с этим фрагментом связываются нуклеокапсиды, которые позже войдут в сос­тав «почки»; 2) в сборку вовлекается еще один вирус­ный белок, являющийся медиатором сборки, который назы­вается мембранным, или матриксным белком. М-белок синтезируется на свободных полисомах, но сразу после синтеза встраивается в клеточные мембраны с внутрен­ней цитоплазматической стороны липидного бислоя. Этот белок в высокой степени гидрофобен и поэтому способен к белок-белковым и белоклипидным взаимодействиям.

Включение М-белка в клеточные мембраны является сигналом для сборки вирусной частицы: вслед за включе­нием немедленно следует связывание нуклеокапсидов с мембранами и почкование вирусной частицы. Тем самым М-белок обладает функцией лимитирующего сборку фактора.

Сборка ДНК-содержащих вирусов. В сборке ДНК-содержащих вирусов есть некоторые отличия от сборки РНК-содержащих вирусов. Как и у РНК-содержащих вирусов, сборка ДНК-содержащих вирусов является мно­гоступенчатым процессом с образованием промежуточных форм, отличающихся от зрелых вирионов по составу по­липептидов. Первый этап сборки заключается в ассоциа­ции ДНК с внутренними белками и формировании сердце­вин или нуклеокапсидов. При этом ДНК соединяется с предварительно сформированными «пустыми» капсидами.

В результате связывания ДНК с капсидами появляет­ся новый класс промежуточных форм, которые называют­ся неполными формами. Помимо неполных форм с раз­ным содержанием ДНК, существует другая промежуточ­ная форма в морфогенезе — незрелые вирионы, отличаю­щиеся от зрелых тем, что содержат ненарезанные пред­шественники полипептидов. Таким образом, морфогенез вирусов тесно связан с модификацией (процессингом) белков.

Сборка ядерных вирусов начинается в ядре, обычно — с ассоциации с ядерной мембраной. Формирующиеся в ядре промежуточные формы вируса герпеса почкуются в перинуклеарное пространство через внутреннюю ядерную мембрану, и вирус приобретает таким путем оболочку, которая является дериватом ядерной мембраны. Дальней­шая достройка и созревание вирионов происходит в мем­бранах эндоплазматической сети и в аппарате Гольджи, откуда вирус в составе цитоплазматических везикул транс­портируется на клеточную поверхность.

У непочкующихся липидсодержащих вирусов — виру­сов оспы сборка вирионов происходит в уже описанных цитоплазматических вирусных «фабриках». Липидная обо­лочка вирусов в «фабриках» формируется из клеточных липидов путем автономной самосборки, поэтому липидный состав оболочек значительно отличается от состава липи­дов в клеточных мембранах.

ВЫХОД ВИРУСНЫХ ЧАСТИЦ ИЗ КЛЕТКИ

Существуют два способа выхода вирусного потомства из клетки: 1) путем «взрыва»; 2) путем почкования.

Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы ока­зываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортиро­ваться на клеточную поверхность до гибели клетки.

Выход из клеток путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.