Алфавитный подход к определению количества информации

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Информационная емкость знака. Представим себе, что необходимо передать информационное сообщение по каналу передачи информации от отправителя к получателю. Пусть сообщение кодируется с помощью знаковой системы, алфавит которой состоит из N знаков {1, ..., N}. В простейшем случае, когда длина кода сообщения составляет один знак, отправитель может послать одно из N возможных сообщений "1", "2", ..., "N", которое будет нести количество информации I (рис. 1.5).

 
Рис. 1.5. Передача информации

 


Формула (1.1) связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение. Тогда в рассматриваемой ситуации N - это количество знаков в алфавите знаковой системы, а I - количество информации, которое несет каждый знак:

N = 2I.

С помощью этой формулы можно, например, определить количество информации, которое несет знак в двоичной знаковой системе:

N = 2 => 2 = 2I => 21 = 2I => I=1 бит.

Таким образом, в двоичной знаковой системе знак несет 1 бит информации. Интересно, что сама единица измерения количества информации "бит" (bit) получила свое название ОТ английского словосочетания "Binary digiT" - "двоичная цифра".

Информационная емкость знака двоичной знаковой системы составляет 1 бит.

Чем большее количество знаков содержит алфавит знаковой системы, тем большее количество информации несет один знак. В качестве примера определим количество информации, которое несет буква русского алфавита. В русский алфавит входят 33 буквы, однако на практике часто для передачи сообщений используются только 32 буквы (исключается буква "ё").

С помощью формулы (1.1) определим количество информации, которое несет буква русского алфавита:

N = 32 => 32 = 2I => 25 = 2I => I=5 битов.

Таким образом, буква русского алфавита несет 5 битов информации (при алфавитном подходе к измерению количества информации).

Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так в среднем на 1000 знаков осмысленного текста приходится 200 букв "а" и в сто раз меньшее количество буквы "ф" (всего 2). Таким образом, с точки зрения теории информации, информационная емкость знаков русского алфавита различна (у буквы "а" она наименьшая, а у буквы "ф" - наибольшая).

Количество информации в сообщении. Сообщение состоит из последовательности знаков, каждый из которых несет определенное количество информации.

Если знаки несут одинаковое количество информации, то количество информации Ic в сообщении можно подсчитать, умножив количество информации Iз, которое несет один знак, на длину кода (количество знаков в сообщении) К:

Ic = Iз × K

Так, каждая цифра двоичного компьютерного кода несет информацию в 1 бит. Следовательно, две цифры несут информацию в 2 бита, три цифры - в 3 бита и т. д. Количество информации в битах равно количеству цифр двоичного компьютерного кода (табл. 1.1).

Таблица 1.1. Количество информации, которое несет двоич ный компьютерный код

 

 
Двоичный компьютерный код
Количество информации 1 бит 1 бит 1 бит 1 бит 1 бит

 

Понятие ценности информации, вводимое в настоящей главе, связывает шенноновскую теорию информации с теорией стастисти-ческих решений. В последней теории основным является понятие средних потерь или риска, которое характеризирует качество принимаемых решений. Ценность информации специализируется как та максимальная польза, которую данное количество информации способно принести в деле уменьшения средних потерь. Такое определение ценности информации оказывается связанным с формулировкой и решением определенных условных вариационных задач. [1]

Ввести понятие ценности информации можно тремя родственными способами, выбирая за основу хартлиевское, больцмановское или шенноновское количество информации. При выборе шеннонов-ского количества информации нужно решать третью вариационную задачу. Между указанными определениями существует известная связь, и одно понятие может служить удобной заменой другого. Все эти понятия характеризуют определенный объект - бейесов-скую систему, который наряду с каналом является важнейшим объектом исследования теории информации. [2]

Вводится понятие ценности информации и демонстрируются различные варианты понятия макси-мина ( наилучшего гарантированного результата) в зависимости от информированности об обстановке операций. Излагаются необходимые условия максимина и примеры его определения для ряда моделей операций, имеющих не только учебный характер. [3]

Таким образом, понятие ценности информации, введенное в предыдущем разделе, шире понятия сложности и, в сущности, включает сложность. Пользуясь понятием ценности, можно преодолеть трудность, связанную с тем, что в эволюции может происходить не усложнение, но упрощение. [4]

Важно отметить, что понятие ценности информации, используемой при контроле функционирования АС, является многогранным и в значительной мере субъективным. Многогранность понятия определяется, с одной стороны, степенью соответствия получаемой информации конкретной задаче контроля, а с другой - возможностью, целесообразностью и своевременностью ее получения. Так, например, интуитивно ясно, что состояние сложной энергетической системы определяется уровнем вырабатываемой или аккумулируемой энергии. [5]

Мы видим, что понятие сложности сходно с понятием ценности информации, рассмотренным в предыдущем параграфе. [6]

Для того чтобы правильно ставить такого рода вопросы, необходимо ввести понятие ценности информации, и это в дальнейшем будет сделано в полном соответствии с проводимыми здесь идеями о сравнении эффективности стратегий вообще. [7]

Таким образом, последнее условие ( хотя оно часто и не принимается во внимание) имеет по существу главное определяющее значение в формулировке понятия ценности информации. [8]

Уменьшение избыточной информации может быть выполнено на основании анализа ценности информации для управления. Как известно, понятие ценности информации не вытекает из самой теории информации, основанной на статистической трактовке вопросов. [9]

Здесь не рассматривается генерация информации и ее инструктирующее значение, определяющее ту или иную биологическую функцию носителя информации. При исследовании развивающейся и эволюционирующей системы необходимо ввести понятие ценности информации для реализации конкретного процесса, эквивалентное ее программирующему, инструктирующему, значению. Ценность информации выражает ее содержание, тогда как количество информации не имеет отношения к ее содержанию. Содержание можно оценить лишь применительно к определенным физическим процессам. [10]

В общем случае работа динамической биологической системы означает реализацию инструктивного, программирующего значения информации, содержащейся в конечном счете в биологических макромолекулах нуклеиновых кислот и белков. Модельное описание такой системы действительно требует понятия ценности информации как инструктирующего фактора. Такое понятие, вообще говоря, не может быть универсальным. Оно должно выражаться в строгих физико-математических терминах применительно к конкретным биологическим процессам. Эйген вводит понятие селективной ценности, характеризующей кинетику матричного синтеза биологических макромолекул. Изложение этой теории и некоторых других вопросов, связанных с понятием ценности информации в биологии, дано в гл

Показатели качества информации

 

Показатели качества информации

Информация в системе управления является и предметом труда, и продуктом труда, поэтому от ее качества существенно зависят эффективность и качество функционирования системы.

Качество информации можно определить как совокупность свойств, обусловливающих возможность ее использования для удовлетворения определенных в соответствии с ее назначением потребностей.

Рекомендуется выделять следующие основные виды показателей качества промышленной продукции:

□ показатели назначения, характеризующие полезный эффект от использования продукции по назначению и обусловливающие область ее применения;

U показатели надежности и долговечности, характеризующие одноименные е.нойства изделий в конкретных условиях их использования;

L) показатели технологичности, обусловливающие высокую производительность труда при изготовлении и ремонте продукции;

U эргономические показатели, учитывающие комплекс физиологических, психологических, антропометрических параметров человека;

L) эстетические показатели, характеризующие такие свойства продукции, как иi>iразительность, гармоничность, соответствие среде, стилю и т. п.;

U показатели стандартизации и унификации продукции;

U патентно-правовые показатели, характеризующие патентную чистоту изделий и степень его патентной защиты в стране;

U показатели экономические, отражающие затраты на разработку, изготовление и эксплуатацию или потребление продукции, а также экономическую эффективность эксплуатации.

Однако информация — весьма своеобразная, не материальная продукция, поэтому применить к ней в полном объеме данные рекомендации невозможно. Анализируя возможность использования названных видов показателей качества, можно сформулировать систему основных показателей качества экономической информации.

Возможность и эффективность использования информации для управления обусловливается такими ее потребительскими показателями качества, как репрезентативность, содержательность, достаточность, доступность, своевременность, устойчивость, точность, достоверность, актуальность и ценность.

Репрезентативность

Репрезентативность — правильность, качественная адекватность отражения заданных свойств объекта. Репрезентативность информации зависит от правильности ее отбора и формирования. Важнейшее значение при этом приобретают: верность концепции, на базе которой сформулировано исходное понятие, отображаемое показателем; обоснованность отбора существенных признаков и связей отображаемого явления; правильность методики измерения и алгоритма формирования экономического показателя. Нарушение репрезентативности информации приводит нередко к существенным ее погрешностям, называемым чаще всего алгоритмическими.

Содержательность

Содержательность информации — это ее удельная семантическая емкость, равная отношению количества семантической информации в сообщении к объему данных, его отображающих, то есть S = IC/VA. С увеличением содержательности информации растет семантическая пропускная способность информационной системы, так как для передачи одних и тех же сведений требуется преобразовы-иать меньший объем данных. Наряду с содержательностью можно использовать и показатель информативности, характеризующийся отношением количества синтаксической информации (по Шеннону) к объему данных — Y = I/V&. Поскольку в правильно организованных системах управления количество семантической информации пропорционально, а часто и равно количеству синтаксической информации в сообщении, то значение S часто может характеризоваться значением Y.

Достаточность

Достаточность {полнота) экономической информации означает, что она содержит минимальный, но достаточный для принятия правильного управленческого решения набор экономических показателей. Понятие достаточности информации связано с ее смысловым содержанием (семантикой) и прагматикой. Как неполная, то есть недостаточная для принятия правильного решения, так и избыточная информация снижают эффективность управления; наивысшим качеством обладает именно полная информация.

Доступность

Доступность информации для восприятия при принятии управленческого решения обеспечивается выполнением соответствующих процедур ее получения и преобразования. Так, назначением вычислительной системы является увеличение ценности информации путем согласования ее с тезаурусом пользователя, то есть преобразование ее к доступной и удобной для восприятия пользователем форме.

Актуальность

Актуальность информации — это свойство информации сохранять свою полезность (ценность) для управления во времени. Измеряется актуальность A(f) степенью сохранения начальной ценности информации Z(t0) в момент времени t ее использования:

A(t) = Z(t)/Z(t0),

где Z(t) — ценность информации в момент времени t

Актуальность зависит от статистических характеристик отображаемого объекта (от динамики изменения этих характеристик) и от интервала времени, прошедшего с момента возникновения данной информации.

Своевременность

Своевременность — это свойство информации, обеспечивающее возможность ее использования в заданный момент времени. Несвоевременная информация приводит к экономическим потерям и в сфере управления, и в сфере производства. Причиной, обусловливающей экономические потери от несвоевременности в сфере управления, является нарушение установленного режима решения функциональных задач, а иногда и их алгоритмов. Это приводит к увеличению стоимости решения задач вследствие снижения ритмичности, увеличения простоев и сверхурочных работ и т. п. в сфере материального производства. Потери от несвоевременности информации связаны со снижением качества управленческих решений, принятием решения на базе неполной информации или информации некачественной. Своевременной является такая информация, которая может быть учтена при выработке управленческого решения без нарушения регламента, поступающая в систему управления не позже назначенного момента времени.

Точность

Точность информации — это степень близости отображаемого информацией значения и истинного значения данного параметра. Для экономических показателей, отображаемых цифровым кодом, известны четыре классификационных понятия точности:

□ формальная точность, измеряемая значением единицы младшего разряда числа, которым показатель представлен;

□ реальная точность, определяемая значением единицы последнего разряда числа, верность которого гарантируется;

□ достижимая точность — максимальная точность, которую можно получить в данных конкретных условиях функционирования системы;

□ необходимая точность, определяемая функциональным назначением показателя и обеспечивающая правильность принимаемого управленческого решения.

Достоверность

Достоверность информации — свойство информации отражать реально существующие объекты с необходимой точностью. Измеряется достоверность информации доверительной вероятностью необходимой точности, то есть вероятностью того, что отображаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности. Наряду с понятием «достоверность информации», существует понятие «достоверность данных», то есть информации, рассматриваемой в синтаксическом аспекте. Под достоверностью данных понимается их безошибочность; измеряемая вероятностью появления ошибок в данных. Недостоверность данных может не повлиять на объем данных, а может даже и увеличить его, в отличие от недостоверности информации, всегда уменьшающей ее количество.

Устойчивость

Устойчивость информации — свойство результатной информации реагировать на изменения исходных данных, сохраняя необходимую точность. Устойчивость информации, как и ее репрезентативность, обусловлена в первую очередь методической правильностью ее отбора и формирования.

Ценность

Ценность экономической информации — комплексный показатель ее качества, ее мера на прагматическом уровне. Ценность экономической информации определяется эффективностью осуществляемого на ее основе экономического управления.

 

Успешное внедрение информационных технологий связано с возможностью их типизации. Конкретная информационная технология обладает комплексным составом компонентов, поэтому целесообразно определить ее структуру и состав.

Конкретная информационная технология определяется в результате компиляции и синтеза базовых технологических операций, специализированных технологий и средств реализации.

 

Технологический процесс - часть информационного процесса, содержащая действия (физические, механические и др.) по изменению состояния информации.

 

Информационная технология базируется на реализации информационных процессов, разнообразие которых требует выделения базовых, характерных для любой информационной технологии.

 

Базовый технологический процесс основан на использовании стандартных моделей и инструментальных средств и может быть использован в качестве составной части информационной технологии. К их числу можно отнести: операции извлечения, транспортировки, хранения, обработки и представления информации.

 

Среди базовых технологических процессов выделим:

 

извлечение информации;

транспортирование информации;

обработку информации;

хранение информации;

представление и использование информации.

Процесс извлечения информации связан с переходом от реального представления предметной области к его описанию в формальном виде и в виде данных, которые отражают это представление.

 

В процессе транспортирования осуществляют передачу информации на расстояние для ускоренного обмена и организации быстрого доступа к ней, используя при этом различные способы преобразования.

 

Процесс обработки информации состоит в получении одних «информационных объектов» из других «информационных объектов», путем выполнения некоторых алгоритмов; он является одной из основных операций, выполняемых над информацией и главным средством увеличения ее объема и разнообразия.

 

Процесс хранения связан с необходимостью накопления и долговременного хранения данных, обеспечением их актуальности, целостности, безопасности, доступности.

 

Процесс представления и использования информации направлен на решение задачи доступа к информации в удобной для пользователя форме.

 

Базовые информационные технологии строятся на основе базовых технологических операций, но кроме этого включают ряд специфических моделей и инструментальных средств. Этот вид технологий ориентирован на решение определенного класса задач и используется в конкретных технологиях в виде отдельной компоненты. Среди них можно выделить:

 

мультимедиа-технологии;

геоинформационные технологии;

технологии защиты информации;

CASE-технологии;

телекоммуникационные технологии;

технологии искусственного интеллекта.

Специфика конкретной предметной области находит отражение в специализированных информационных технологиях, например, организационное управление, управление технологическими процессами, автоматизированное проектирование, обучение и др. Среди них наиболее продвинутыми являются следующие информационные технологии:

 

организационного управления (корпоративные информационные технологии);

в промышленности и экономике;

в образовании;

автоматизированного проектирования.

Аналогом инструментальной базы (оборудование, станки, инструмент) являются средства реализации информационных технологий, которые можно разделить на методические, информационные, математические, алгоритмические, технические и программные.

 

CASE-технология (Computer Aided Software Engineering - Компьютерное Автоматизированное Проектирование Программного обеспечения) является своеобразной «технологической оснасткой», позволяющей осуществить автоматизированное проектирование информационных технологий.

 

Методические средства определяют требования при разработке, внедрении и эксплуатации информационных технологий, обеспечивая информационную, программную и техническую совместимость. Наиболее важными из них являются требования по стандартизации.

 

Информационные средства обеспечивают эффективное представление предметной области, к их числу относятся информационные модели, системы классификации и кодирования информации (общероссийские, отраслевые) и др.

 

Математические средства включают в себя модели решения функциональных задач и модели организации информационных процессов, обеспечивающие эффективное принятие решения. Математические средства автоматически переходят в алгоритмические, обеспечивающие их реализацию.

 

Технические и программные средства задают уровень реализации информационных технологий как при их создании, так и при их реализации.

 

Таким образом, конкретная информационная технология определяется в результате компиляции и синтеза базовых технологических операций, отраслевых технологий и средств реализации.