Вторая улучшенная формула Эйлера
Пусть дано дифференциальное уравнение:
с начальными условиями:
.
Решение в каждой точке определяется по формуле:
,
где
Геометрически это означает, что определяется направление интегральной кривой в исходной точке и во вспомогательной точке , а в качестве окончательного направления ломаной берется среднее этих направлений.
Пример.
Пусть дано дифференциальное уравнение:
с начальными условиями:
.
Решение ОДУ имеет вид:
0.0 | 1.000 |
0.1 | 1.110 |
0.2 | 1.241 |
br>