Вторая улучшенная формула Эйлера

Пусть дано дифференциальное уравнение:

с начальными условиями:

.

Решение в каждой точке определяется по формуле:

 

,

где

Геометрически это означает, что определяется направление интегральной кривой в исходной точке и во вспомогательной точке , а в качестве окончательного направления ломаной берется среднее этих направлений.

Пример.

Пусть дано дифференциальное уравнение:

с начальными условиями:

.

Решение ОДУ имеет вид:

 

0.0 1.000
0.1 1.110
0.2 1.241

 

br>