Интерполяционная формула Ньютона для неравностоящих значений аргумента

Разделённые разности

Если в таблицах встречаются неравноотстоящие значения аргумента, т.е. таблицы с переменным шагом, то вводят понятие разделённых разностей.

Пусть функция задана таблично, где

- значения аргумента

- значения функции

отношения - разделённая разность первого порядка

- разделённая разность второго порядка

- разделённая разность -го порядка

Разделённые разности удобнее всего рассматривать в таблице - таблице разностей

    Разделённые разности  
    1-го 2-го 3-го 4-го
       
         
     
       
   
       
     
         
       
                 

 

 

Дано - значения аргумента

- значения функции

Апроксимировать таблично заданную функцию полиномом порядка не выше

 

Пример:

 

1-го 2-го 3-го
1,450      
    1,127    
1,5 3,140   -0,098  
    0,795   - 0,012
3,4 4,650   -0,18  
    -0,159    
6,8 4,110