Схемы включения транзисторов

Классификация диодов и основные рабочие параметры

Вольтамперная характеристика (ВАХ).

 

Зависимость тока протекающего через полупроводниковый диод от приложенного к его выводам напряжения называется вольтамперной характеристикой.

Рисунок 2.5. – Вольтамперная характеристика диода.

 

Диоды классифицируются по назначению, конструктивно-технологическим особенностям, роду используемого материала:

§ по назначению

1) выпрямительные;

2) стабилитроны;

3) высокочастотные;

4) импульсные;

5) варикапы;

§ по конструктивно-технологическим особенностям

1) плоскостные;

2) точечные;

§ по роду используемого материала

1) германиевые;

2) кремниевые и т.д.

 

Основные параметры диодов:

1) средний прямой ток– среднее значение выпрямленного тока, который может длительно протекать через диод при допустимом его нагреве;

2) среднее прямое напряжение, однозначно определяемое по ВАХ при заданном значении );

3) постоянный обратный ток ;

4) постоянное обратное напряжение;

5) диапазон рабочих частот Df, в пределах которого ток диода не уменьшается ниже заданного значения;

6) емкость диода при обратном включении.

Параметры предельного электрического режима диодов: - максимально допустимое постоянное обратное напряжение, которое длительно выдерживает диод без нарушения нормальной работы (берется на 20% меньше напряжения пробоя ); - максимально допустимый постоянный прямой ток диода; - максимально допустимая температура корпуса; Рmax – максимально допустимая рассеиваемая мощность; fmax – максимальная рабочая частота.

 

 

Рисунок 2.6. - Внешний вид полупроводниковых диодов.


Лекция 3. Биполярный транзистор (триод)

 

Транзистор – это преобразовательный прибор, имеющий не менее трех выводов и пригодный для усиления мощности.Использование в качестве носителей зарядов обеих полярностей – электронов и дырок предопределило название полупроводниковых триодовбиполярные.

 

Рассмотрим, прежде всего, как работает транзистор, для примера p-n-p без нагрузки, когда включены только источники постоянных питающих напряжений Е1 и Е2 (рис. 3.1).

 

Рисунок 3.1. - Схема подключения биполярного транзистора.

 

Обычно Е2 >> Е1. При замыкании ключей Пр1 и Пр2 через эмиттерный p-n- переход пройдет прямой ток, создаваемый направленным движением основных носителей заряда: дырок эмиттера и электронов базы. Путь тока: + Е1, mА1, эмиттер, база, mА2, ключи Пр2 и Пр1, - Е1.

Если ключ Пр1 разомкнуть, а ключи Пр2 и Пр3 замкнуть, то в цепи пройдет незначительный обратный ток.

При замыкании всех трех ключей в цепи эмиттер – база имеет место многократное расхождение между количеством дырок, проходящих в базу и числом электронов, движущихся в противоположном направлении. Это явление вызвано тем, что концентрация носителей заряда в базе значительно меньше, чем в эмиттере, поэтому дырки, попав в базу, для которой они являются неосновными носителями заряда, начинают рекомбинировать с электронами. Но рекомбинация – процесс не мгновенный. Поэтому почти все дырки успевают пройти через тонкий слой базы и достигнуть коллекторного p-n-перехода прежде, чем произойдет рекомбинация. Пройдя к коллектору дырки, начинают испытывать действие электрического поля, создаваемого источником напряжения Е2. Это поле для дырок является ускоряющим, благодаря чему и создается ток коллектора.

Ток эмиттерного перехода состоит из двух составляющих: дырочной и электронной

.

В результате рекомбинации части дырок с электронами

.

 

 

 

Рисунок 3.2. - Распределение токов в биполярном транзисторе.

 

Для определения части дырок, прошедшей из эмиттера в коллектор вводят коэффициент переноса дырок в базе:

.

Стремятся получить значение коэффициента переноса как можно ближе к единице. Реально эта цифра находится в пределах 0,96 …0,996.

Одним из важнейших показателей эмиттерного перехода является так называемый коэффициент инжекции, показывающий какую часть от полного тока, занимает его дырочная составляющая (= 0,97 … 0,995)

.

Коллекторный ток транзистора, обусловленный дырочной составляющей, связан с током эмиттера коэффициентом передачи тока

.

После перемножения числителя и знаменателя на значение , получим

Следовательно, коэффициент передачи тока тем ближе к единице, чем меньше от нее отличаются и .

Наличие коллекторного перехода, включенного в обратном направлении, приводит к появлению дополнительной неуправляемой составляющей тока коллектора, обусловленной протеканием обратного тока коллекторного перехода , часто называемого тепловым.

Рисунок 3.3. – Обозначение биполярного транзистора на принципиальных схемах.

Рисунок 3.4. – Внешний вид биполярных транзисторов.

 

Управляющие свойства транзистора, характеризующие изменение выходного (коллекторного) тока под действием подводимого входного тока , обуславливается изменением дырочной составляющей эмиттерного тока . Таким образом, принцип действия биполярного транзистора основан на создании транзисторного (проходящего) потока носителей заряда из эмиттера в коллектор через базу и управлении коллекторным током за счет изменения эмиттерного (входного) тока. Следовательно, биполярный транзистор управляется током.

 

При работе под нагрузкой режим и параметры работы биполярного транзистора будут отличаться от ранее рассмотренного. Здесь транзистор используется в качестве усилителя электрических колебаний, работа которого основана на зависимости тока коллектора от величины напряжения, приложенного к участку эмиттер – база (см. рисунок).

При отсутствии переменного напряжения Uвх до момента t1 в цепи эмиттера протекает ток Iэ , а в цепи коллектора – ток Iк , почти равный по величине току Iэ . Проходя по сопротивлению тока нагрузки Uн = Iк× Rн . При подаче на вход транзистора последовательно с напряжением Е1 переменного напряжения Uвх эмиттерный ток становится пульсирующим. При этом будет изменяться количество дырок, вводимых из эмиттера в базу, а, следовательно, и ток в цепи коллектора Iк. Этот ток, проходя через сопротивление нагрузки Rн, создает на нем пульсирующее напряжение, повторяющее по форме входной сигнал. Переменная составляющая пульсирующего Uвх отделяется с помощью конденсатора Ср от постоянной составляющей и подается на выход усилителя в виде переменного напряжения Uвых. Здесь следует подчеркнуть, что усиление сигнала с помощью транзистора происходит за счет потребления энергии источников питания. Сам транзистор выполняет функции свободного регулятора, который под воздействием слабого входного сигнала, введенного в цепь с малым сопротивлением, изменяет ток в выходной цепи, обладающей большим сопротивлением.

Число, показывающее во сколько раз переменное напряжение на выходе усилителя превышает напряжение сигнала на входе, называется коэффициентом усиления по напряжению и обозначается KU

KU = Uвых / Uвх = (Iк RН) / (Iэ rЭ ) .

Так как Iк » Iэ , то

KU » Rн / rэ.

Из вышеприведенного рассмотрения работы транзистора в качестве усилителя ясно, что ток Iк в выходной цепи всегда несколько меньше тока Iэ, протекающего во входной цепи. Тем не менее, одним из показателей, характеризующих усилительные свойства транзистора, является так называемый коэффициент усиления по току KI , представляющий собой отношение приращения выходного тока к вызвавшему его приращению входного тока. Для приведенной выше схемы включения транзистора коэффициент усиления по току KI = D Iк / DIэ - величина меньше единицы (0,9 … 0,99) и носит более точное название «коэффициент передачи тока эмиттера» и обозначается буквой a. Чем больше коэффициент a, тем больше коэффициенты усиления транзистора по напряжению и по мощности (KP = KI · KU).

Принцип действия транзистора, собранного по иной структурной схеме – n-p-n, не отличается от рассмотренного выше. Здесь в область базы вводится из эмиттера не дырка, а электрон.

Различные схемы включения транзисторов имеют разные свойства, но принцип усиления электрических колебаний в них одинаков.

 

 

1) Схема включения транзисторов с общей базой (ОБ) (рис. 3.5 а):

выходная характеристика отражает зависимость тока коллектора от напряжения на коллекторе относительно базы при фиксированном токе эмиттера (рис. 3.5 б)

;

входная характеристика (рис. 3.5 в)

.

а) б) в)

Рисунок 3.5. Включение транзистора с общей базой.

 

Схема включения с ОБ обеспечивает усиление сигнала по напряжению.

 

2) Схема включения транзисторов с общим эмиттером (ОЭ)

 

Основной особенностью схемы с общим эмиттером является то, что входным током в ней является не ток эмиттера, а малый по величине ток базы IБ . Поэтому входное сопротивление каскада с общим эмиттером значительно выше, чем входное сопротивление каскада с общей базой, и составляет сотни Ом. Выходное сопротивление в схеме с общим эмиттером также достаточно велико (порядка десятка кОм).

 

выходная характеристика (рис. 3.6 б)

;

входная характеристика (рис. 3.6 в)

 

а) б) в)

Рисунок 3.6. Включение транзистора с общим эмиттером.

 

Схема включения с ОЭ обеспечивает усиление сигнала, как по напряжению, так и по току.

Статические ВАХ сняты при отсутствии сопротивления нагрузки в выходной цепи .

В практических случаях выходная цепь содержит сопротивление нагрузки. В этом случае говорят о динамическом режиме работы транзистора. В динамическом режиме изменения коллекторного тока при Ек=const и Rk=const зависят не только от изменения базового тока, но и от изменений напряжения на коллекторе

которое, в свою очередь, определяется изменениями как базового, так и коллекторного токов. Такой режим работы называется динамическим, а характеристики, определяющие связь между токами и напряжениями транзистора при наличии сопротивления нагрузки – динамическими. Динамические характеристики строятся на семействах статических ВАХ при заданных значениях Ек и Rк.

Для построения динамической выходной характеристики схемы с ОЭ использовано уравнение динамического режима, которое представляет собой уравнение прямой. Это очевидно, если ее представить в виде

Ik = Ek / Rk – Uкэ / Rk ;

Ek = Uкэ ; Ik = 0 – точка А ;

Uкэ = 0 ; Ik = Ek / Rk – точка B ;

j = arctg Rk .

Точка пересечения динамической характеристики (нагрузочной прямой) с одной из статических ВАХ называется рабочей точкой транзистора (р). Изменяя Iб, можно перемещать рабочую точку по нагрузочной прямой.

Существует три основных режима работы транзистора :

· Активный (усилительный) ;

· Насыщения ;

· Отсечки .

Область отсечки ограничена сверху ВАХ , соответствующей Iб = - Iко (оба p-n перехода транзистора закрыты). Область насыщения ограничена справа прямой линией, из которой выходят статические ВАХ (оба p-n перехода триода открыты). Активная область лежит между областями отсечки и насыщения .

 

3) Схема включения транзисторов с общим коллектором (ОК)

Входное сопротивление схемы с общим коллектором очень велико (порядка десятков и сотен кОм), а выходное сопротивление, наоборот, мало и составляет лишь десятки или сотни Ом. Поэтому каскад с общим коллектором имеет коэффициент усиления по напряжению меньше единицы, а усиление по мощности несколько меньше коэффициента усиления по току. Данная схема служит, в основном, для согласования сопротивлений между отдельными каскадами усилителя или между выходом усилителя и низкоомной нагрузкой.

В схемах с общим коллектором входным током, как и в схемах с общим эмиттером, является ток базы, а выходным током – ток эмиттера. Поэтому коэффициент усиления по току для этой схемы может быть найден по формуле

.

ВАХ этой схемы близки к ВАХ схемы с ОЭ.

 

4) Схема включения Дарлингтона:

Применяют в системах, работающих с большими токами или для усилителей, где необходимо обеспечить большое входное сопротивление.

Для этой схемы

.

Здесь - параметр, отражающий приращение одной физической величины к приращению другой физической величины без учета процессов, происходящих в устройстве.

 


Лекция 4. Силовые полупроводниковые приборы (СПП)

 

К СПП относятся управляемые приборы, используемые в различных силовых устройствах: электроприводе, источниках питания, мощных преобразовательных установках. Для снижения потерь приборы должны работать в ключевом режиме, для чего следует добиваться:

· малых потерь при коммутации (включение, выключение);

· больших скоростей переключения из одного состояния в другое;

· малого потребления мощности по цепям управления;

· большого коммутируемого тока и высокого рабочего напряжения.