Пирамида биомасс и пирамида энергий.

В соперничестве с другими экосистемами выживает (сохраняется) та из них, которая наилучшим образом способствует поступлению энергии и использует максимальное ее количество наиболее эффективным способом.

Авторы данного закона указывают: «с этой целью система; 1) создает накопители (хранилища) высококачественной энергии (например, запасы жира); 2) затрачивает определенное количество накопленной энергии на обеспечение поступления новой энергии; 3) обеспечивает круговорот различных веществ; 4) создает механизмы регулирования, поддерживающие устойчивость системы и ее способность к приспособлению к изменяющимся условиям; 5) налаживает с другими системами обмен, необходимый для обеспечения потребности в энергии специальных видов».

Закон максимизации энергии справедлив и в отношении информации, следовательно (по Н. Ф. Реймерсу), его возможно рассматривать и как закон максимизации энергии и информации с такой формулировкой: наилучшими шансами на самосохранение обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации.

Ранее отмечалось, что между организмами биоценоза возникают и устанавливаются прочные пищевые взаимоотношения, или цепь питания. Последняя состоит из трех основных звеньев: продуцентов, консументов и редуцентов.

Цепи питания, которые начинаются с фотосинтезирующих организмов, называют цепями выедания (или пастбищными), а цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животных, — детритными цепями.

Место каждого звена в цепи питания называют трофическим уровнем, он характеризуется различной интенсивностью протекания потока веществ и энергии.

Первый трофический уровень всегда составляют продуценты; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм, — к третьему; потребляющие других плотоядных — соответственно к четвертому, и т.д. Вследствие этого различают консументов первого, второго, третьего и четвертого порядков, занимающих разные уровни в цепях питания. Очевидно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания могут включаться в цепи питания на разных трофических уровнях. В рацион, например, человека входит как растительная пища, так и мясо травоядных и плотоядных животных. Поэтому он выступает в разных пищевых цепях в качестве консумента первого, второго или третьего порядков.

Так как при передаче энергии с одного уровня на другой происходит ее потеря, цепь питания не может быть длинной. Обычно она состоит из 4 - 6 звеньев.

Однако такие цепи в чистом виде в природе обычно не встречаются, поскольку одни и те же виды могут быть одновременно в разных звеньях. Это обусловлено тем, что монофагов в природе мало, намного чаще встречаются олигофаги и полифаги. Например, хищники, которые питаются различными растительноядными и плотоядными животными, являются звеньями многих цепей. Из-за этого в каждом биоценозе исторически формируются комплексы цепей питания, представляющие собой единое целое. Подобным образом создаются сети питания, которые отличаются большой сложностью.

Таким образом, можно сделать вывод о том, что пищевая цепь — основной канал переноса энергии в сообществе.

Линейную цепь с четко разделенными уровнями можно создать в лабораторных условиях. Однако в природе реально существуют трофические сети, в которых многие популяции принадлежат сразу к нескольким трофическим уровням.

Расходы на дыхание Консументы I, II и III порядка

Расходы на дыхание и разложение органики

Один и тот же организм потребляет в пищу и животных, и растения; хищник может питаться консументами I и II порядка; многие животные едят как живые, так и отмершие растения.

Благодаря сложности трофических связей выпадение какого-то одного вида нередко почти не сказывается на сообществе. Пищу исчезнувшего вида начинают потреблять другие «пользователи», питавшиеся им виды находят новые источники пищи, и в целом в сообществе сохраняется равновесие.

Теперь рассмотрим, как и в каком соотношении передается энергия, заключенная в растительной пище, по цепям питания.

В ходе фотосинтеза растения связывают в среднем лишь около 1 % попадающей на них солнечной энергии. Животное, которое съело растение, часть пищи не переваривает и выделяет в виде экскрементов. Усваивается обычно 20—60% растительного корма, усвоенная энергия расходуется на поддержание жизнедеятельности животного. Функционирование организма сопровождается выделением тепла, в результате существенная доля энергии пищи вскоре рассеивается в окружающей среде. Сравнительно небольшая часть пищи идет на построение новых тканей и создание жировых запасов. В дальнейшем хищник, съевший это растительноядное животное и представляющий третий трофический уровень, получает только ту энергию из накопленной растением, которая задержалась в теле его жертвы (второй уровень) в виде прироста биомассы.

Согласно расчетам, на каждом этапе передачи вещества и энергии по пищевой цепи теряется примерно 90% энергии и только около одной десятой доли ее переходит к очередному потребителю. Указанное соотношение в передаче энергии в пищевых связях организмов называют «правилом десяти процентов» (принцип Линдемана). Например, количество энергии, которая доходит до третичных плотоядных (пятый трофический уровень), составляет лишь около 10-4 энергии, поглощенной продуцентами. Тем самым объясняется ограниченное количество (5 — 6) звеньев (уровней) в пищевой цепи независимо от сложности видового состава биоценоза.

Рассматривая поток энергии в экосистемах, легко понять также, почему с повышением трофического уровня биомасса снижается. Здесь проявляется третий основной принцип функционирования экосистем:

чем больше биомасса популяции, чем ниже должен быть занимаемый ею трофический уровень, или иначе: на конце длинных пищевых цепей не может быть большой биомассы.

Правило пирамид. Всем экосистемам отвечают определенные соотношения первичной и вторичной продукции, называемые правилом пирамиды продукции.

на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем.

Например, масса всех трав, выросших за год в степи, значительно больше, чем годовой прирост всех растительноядных животных, а прирост хищников меньше, чем растительноядных животных.

Указанное правило отображают в виде пирамид, сужающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты. Длина этих прямоугольников соответствует масштабам продукции на соответствующих трофических уровнях (рис.).

 

Коралловый риф Залежь Пелагиаль океана

 

Рис. Пирамиды биомассы некоторых сообществ (по Ф. Дре, 1976 г.):

П – продуценты, РК – растительноядные консументы, ПК – платоядные консументы. Ф – фитопланктон, З – зоопланктон (крайняя справа пирамида биомассы имеет перевернутый вид).

 

Известно, что основными продуцентами в океане являются одноклеточные водоросли, отличающиеся высокой скоростью оборота генераций. Вся чистая первичная продукция так быстро вовлекается в цепи питания, т.е. поедается, что накопление биомассы водорослей весьма мало. Тем не менее из-за высоких темпов размножения небольшой их запас вполне достаточен для поддержания скорости воссоздания органического вещества. Поэтому для океана пирамида биомасс имеет перевернутый вид. На высших трофических уровнях преобладает тенденция к накоплению биомассы, поскольку длительность жизни крупных хищников (например, кита-касатки) велика, скорость оборота этих генераций (поколений), наоборот, мала, и в их телах задерживается значительная часть вещества, поступающего по цепям питания.

В тех трофических цепях, где передача происходит в основном через связи «хищник-жертва», справедливо правило пирамиды чисел.