ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ

ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА

Одним из методических приемов, облегчающих исследование электромагнитных процессов и расчет трансформаторов, является замена реального трансформатора с магнитными связями между обмотками эквивалентной электрической схемой (рис. 4.6.1).

На этом рисунке представлена эквивалентная схема приведенного трансформатора, на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены с ними последовательно. Т.к. k = 1, то E1 = E2. Поэтому точки А и а, а также Х и х на приведенном трансформаторе имеют одинаковые потенциалы, что позволит электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 4.6.2).

Произведя математическое описание этой схемы методами Кирхгофа, можно сделать вывод о том, что она полностью соответствует уравнениям ЭДС и токов реального трансформатора (см. раздел 4.5). Отсюда появляется возможность электрического моделирования трансформатора на ЭВМ. Проводя исследования относительно нагрузки z2' (единственного переменного параметра схемы), можно прогнозировать реальные ха-рактеристики трансформатора, начиная от холостого хода (z2'= ) и кончая коротким замыканием (z2' = 0).

 

Построение векторной диаграммы удобнее начинать с вектора основного потока Ф. Отложим его по оси абсцисс. Вектор I10 опережает его на угол a . Далее строим векторы ЭДС Е1 и Е2', которые отстают от потока Ф на 90°. Для определения угла сдвига фаз между E2' и I2' следует знать характер нагрузки. Предположим, она - активно-индуктивная. Тогда I2' отстает от E2' на угол f2.
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.). Для того чтобы достроить ее, необходимо воспользоваться тремя основными уравнениями приведенного трансформатора.

Воспользуемся вторым основным уравнением:

и произведем сложение векторов.
Для этого к концу вектора E2' пристроим вектор - j I2' x2', а к его концу - вектор - I2' r2'. Результирующим вектором U2' будет вектор, соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение

из которого видно, что вектор тока I1 состоит из геометрической суммы векторов I10 и - I2'. Произведем это суммирование и достроим векторную диаграмму.
Теперь вернемся к первому основному уравнению:

Чтобы построить вектор - Е1 , нужно взять вектор +Е1 и направить его в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1 . Первый будет идти перпендикулярно току, а второй - параллельно ему. В результате получим суммарный вектор u1.
Построенная векторная диаграмма имеет общий характер. По этой же методике можно осуществить ее построение как для различных режимов, так и для разных характеров нагрузки.