Другие источники радиации

Радон

Лишь недавно ученые поняли, что наиболее весомым из всех естественных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) радон. Согласно текущей оценке НКДАР ООН, радон вместе со своими дочерними продуктами радиоактивного распада ответствен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы облучения, получаемой населением от земных источников радиации, и примерно за половину этой дозы от всех естественных источников радиации. Большую часть этой дозы человек получает от радионуклидов, попадающих в его организм вместе с вдыхаемым воздухом, особенно в непроветриваемых помещениях.

В природе радон встречается в двух основных формах: в виде радона - 222, члена радиоактивного ряда, образуемого продуктами распада урана-238, и в виде радона-220, члена радиоактивного ряда тория-232. По-видимому, радон-222 примерно в 20 раз важнее, чем радон-220 (имеется в виду вклад в суммарную дозу облучения), однако для удобства оба изотопа в дальнейшем будут рассматриваться вместе и называться просто радоном. Вообще говоря, большая часть облучения исходит от дочерних продуктов распада радона, а не от самого радона.

При равновесной объёмной активности в воздухе свыше 100 Бк/м3 радон, согласно НРБ-99, уже представляет значимую радиационную опасность. Именно эта величина является пороговой допустимой концентрацией при проектировании новых зданий. Для старых построек допустима объёмная активность до 200 Бк/м3. При превышении этой величины обязательны защитно-профилактические мероприятия.

Возникает вопрос: почему радон так опасен? Он же инертный газ, и, естественно, ни в каких биохимических процессах участвоватьне может. Вдохнул – выдохнул... Дело, однако, в том, что некоторая его часть растворяется в крови легочной ткани и разносится по всему организму. Кроме того, он сорбируется на любых пылевых, аэрозольных и смолистых отложениях в дыхательных путях; именно поэтому радоновая опасность резко повышается для шахтеров, у которых запыленность легких, увы, нередкое явление, и для курящих – из-за смолистых и аэрозольных отложений, обусловленных табачным дымом.

Но и это еще полбеды. У радона сравнительно малый период полураспада, и его собственное излучение не создало бы и десятой доли возникающих проблем, даже с учетом того, что он, как и любой α-излучатель, достаточно опасен при внутреннем облучении. Однако, по-настоящему страшны радиоактивные продукты его распада, в особенности α-активные полоний-218 и полоний-214. Вот они-то, в отличие от собственно радона, химически активны, достаточно прочно удерживаются организмом и эффективно воздействуют на живые ткани (в том числе на жизненно важные) опаснейшим альфа- излучением. Таким образом, собственно радон играет скромную, но зловредную роль «переносчика», как грызун при распространении чумы.

Чем это грозит человеку? В первую очередь – раком. По оценкам, сделанным на основе ЛБГ, только в США за счет проживания людей в жилых помещениях с объёмной активностью радона свыше 100 Бк/м3 насчитывается около 10 000 дополнительных случаев заболевания раком легких. Для СНГ эта цифра составляет приблизительно 15 000, и предстоит еще выявить несколько миллионов жителей, которые, сами того не ведая, получают за счет радонового облучения дозу больше, чем в чернобыльской зоне. По указанным оценкам, объёмная активность радона в воздухе жилых помещений, равная 400 Бк/м3 (что для очень многих стран, и не только в СНГ, отнюдь не редкость), влечет такой же дополнительный риск, как выкуривание пачки сигарет в день. Вероятно, такое сравнение скажет читателю больше, чем сухие цифры концентраций.

 

Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для разных точек земного шара. Как ни парадоксально это может показаться, на первый взгляд, но основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении. В зонах с умеренным климатом концентрация радона в закрытых помещениях, в среднем, в 8 раз выше, чем в наружном воздухе.

Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды.Поступая внутрь помещения тем или иным путем (просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома), радон накапливается в нем. В результате в помещении могут возникать довольно высокие уровни радиации, особенно если дом стоит на грунте с относительно повышенным содержанием радионуклидов или если при его постройке использовали материалы с повышенной радиоактивностью. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещения.

Очень высокие концентрации радона регистрируют последнее время все чаще. В конце 70-х годов строения, внутри которых концентрация радона в 5000 раз превышала среднюю его концентрацию в наружном воздухе, были обнаружены в Швеции и Финляндии. В 1982 году, ко времени выхода последнего доклада НКДАР, строения с уровнями радиации, в 500 раз превышающими типичные значения в наружном воздухе, были выявлены в Великобритании и США. В обеих странах были обнаружены жилища с концентрацией радона, примерно равной его максимальной концентрации в жилых домах скандинавских стран. При дальнейших обследованиях такого рода выявляется все больше домов с очень высокой концентрацией радона.

Самые распространенные строительные материалы – дерево, кирпич и бетон – выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит и пемза, используемые в качестве строительных материалов, например, в Советском Союзе и Германии.

Среди других промышленных отходов с высокой радиоактивностью, применявшихся в строительстве, следует назвать кирпич из красной глины - отхода производства алюминия, доменный шлак – отход черной металлургии и зольную пыль, образующуюся при сжигании угля.

Конечно, радиационный контроль строительных материалов заслуживает самого пристального внимания, однако главный источник радона в закрытых помещениях – это грунт. Особенно эффективное средство уменьшения количества радона, просачивающегося через щели в полу, – вентиляционные установки в подвалах. Кроме того, эмиссия радона из стен уменьшается в 10 раз при облицовке стен пластиковыми материалами типа полиамида, поливинилхлорида, полиэтилена или после покрытия стен слоем краски на эпоксидной основе или тремя слоями масляной краски. Даже при оклейке стен обоями скорость эмиссии радона уменьшается примерно на 30%.

В среднем концентрация радона в ванной комнате примерно в три раза выше, чем на кухне, и приблизительно 40 раз выше, чем в жилых комнатах.

А самый простой и самой эффективной мерой снижения радоновой опасности является вентиляция. На рис. 21 показано изменение концентрации радона в комнате, где и всего-то «мере» принималось, что открывали дверь и окно.

 

Таблица 1.

Суммарная статистика по объемной активности радона внутри жилых зданий, Бк/м3

Кол-во квартир Мин. Макс. Среднее арифм. Станд. откл. Медиана

 

Таблица 2.

Объемная активность радона в атмосфере зданий разного типа, Бк/м3

Тип дома Среднее арифм. Среднее геометр. Медиана Станд. откл.
Кирпичный
Панельный
Шлакоблочный (все) - 1 этаж - 2 этаж
Деревянный (все) - 1 этаж - 2 этаж

 

Средние уровни радона в кирпичных, шлакоблочных и панельных домах практически одинаковы. Уровни радона на этажах выше первого деревянных и шлакоблочных домов также не отличаются. Максимальные значения наблюдаются в «холодный» период года, а минимальные - в «теплый». В панельных зданиях, независимо от уровня этажа, ОА радона в летний период почти в 3 раза ниже, чем в зимний. В кирпичных зданиях наблюдается больший разброс данных. Это объясняется, по-видимому, существенными различиями в конструкционном исполнении по сравнению с панельными домами. Уровни радона внутри кирпичных домов в зимний сезон в 1,3 - 2,4 раза выше, чем в летний.

В помещениях всех типов выше первого этажа, для летнего периода, уровни радона практически одинаковы (33 – 39 Бк/м3).

Оценки среднегодовой эффективной эквивалентной дозы облучения населения г. Томска, формирующейся при вдыхании радона и его дочерних продуктов распада (ДПР), представлены в таблице 3. Оценки доз облучения населения производили в соответствии с рекомендациями МКРЗ, принимая коэффициент равновесия между радоном и его ДПР равным 0,4 и время, проводимое человеком в помещении – 7000 часов в год.

Таблица 3.

Тип здания / процент жильцов Среднегодовая эффективная эквивалентная доза, мЗв
Все типы зданий (среднее арифм. значение) 1,45
Все типы зданий (средневзвешенное по численности населения значение) 1,24*

* - значение рассчитано с учетом количества проживающих в зданиях разных типов. Согласно статистическим данным переписи населения 1989 г. /132/; # - для расчетов принято, что на 1 и 2 этажах проживает равное количество жителей.

 

Из табл. 3 видно, что средневзвешенное по численности населения значение дозы облучения немного ниже, чем среднеарифметическое, поскольку процент жителей деревянных и шлакоблочных зданий невелик (19,7%). Население, проживающее на вторых этажах деревянных домов, получает минимальную дозу облучения. Для кирпичных и панельных домов основным источником поступления радона в атмосферу помещений является его выделение из строительных материалов. Для помещений 2-го и выше этажей деревянных и шлакоблочных домов основным источником радона являются также строительные материалы.

1. Для помещений первых этажей деревянных и шлакоблочных домов наиболее значимым источником радона является почва под зданием. Конструкционная особенность таких домов – наличие подполов, слабо изолированных от помещений 1-го этажа. Подпольные помещения обычно не изолированы от окружающего грунта. Следовательно, радон из грунта беспрепятственно попадает в подпольное пространство, а затем проникает внутрь помещений первого этажа через негерметичные стыки в полах. Наблюдается довольно широкий диапазон вариаций ОА радона на первых этажах таких домов (5 – 654 Бк/м3 для деревянных и 5 – 546 Бк/м3 для шлакоблочных).

2. Проведенные модельные расчеты уровней радона для кирпичных и панельных зданий показали хорошее согласие с экспериментально определенными значениями, что позволяет планировать уровни радона на стадии проектирования зданий.

 

Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

Хотя концентрация радионуклидов в разных угольных пластах различается в сотни раз, в основном уголь содержит меньше радионуклидов, чем земная кора в среднем. Но при сжигании угля большая часть его минеральных компонент спекается в шлак или золу, куда в основном и попадают радиоактивные вещества. Большая часть золы и шлаки остаются на дне топки электросиловой станции. Однако более легкая зольная пыль уносится тягой в трубу электростанции. Количество этой пыли зависит от отношения к проблемам загрязнения окружающей среды и от средств, вкладываемых в сооружение очистных устройств. Облака, извергаемые трубами тепловых электростанций, приводят к дополнительному облучению людей, а осевшие на землю частички могут вновь вернуться в воздух в составе пыли.

Мировой выброс урана и тория от сгорания угля составляет около 40000 т ежегодно. В процессе сжигания угля теряется больше потенциальной энергии, чем выбрасывается.

ТЭЦ на угле России выбрасывают радионуклиды, превышающие 1000 т. в год по урану. Для сравнения предприятиями Росатома России в 2004 г. в водные объекты сброшено около 7 т урана, выбросу в атмосферу – 2,9 т.

ТЭЦ на угле (Nэл=1000 МВт) в течение года выделяется больше радиоактивности, чем АЭС, а в золе содержится столько урана-235, что достаточно для изготовления двух атомных бомб. Экспериментально установлено, что индивидуальные дозы облучения в районе расположения ТЭЦ мощностью 1000 МВт превышают аналогичную дозу вблизи АЭС в 5-10 раз.

Еще один источник облучения населения – термальные водоемы. Некоторые страны эксплуатируют подземные резервуары пара и горячей воды для производства электроэнергии и отопления домов; один такой источник вращает турбины электростанции в Лардерелло в Италии с начала нашего века. Измерения эмиссии радона на этой и еще на двух, значительно более мелких, электростанциях в Италии показали, что на каждый гигаВатт×год вырабатываемой ими электроэнергии приходится ожидаемая коллективная эффективная эквивалентная доза 6 чел·Зв, т. е. в три раза больше аналогичной дозы облучения от электростанций, работающих на угле.

Добыча фосфатов ведется во многих местах земного шара; они используются, главным образом, для производства удобрений, которых в 1990 году во всем мире было получено около 30 млн. т. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в сырье в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае бывает обыкновенно незначительным, но возрастает, если удобрения вносят в землю в жидком виде или если содержащие фосфаты вещества скармливают скоту. Такие вещества действительно широко используются в качестве кормовых добавок, что может привести к значительному повышению содержания радиоактивности в молоке.

Не много известно также о вкладе в облучение населения от зольной пыли, собираемой очистными устройствами. В некоторых странах более трети ее используется в хозяйстве, в основном в качестве добавки к цементам и бетонам. Иногда бетон на 4/5 состоит из зольной пыли. Она используется также при строительстве дорог и для улучшения структуры почв в сельском хозяйстве. Все эти применения могут привести к увеличению радиационного облучения, но сведений по этим вопросам публикуется крайне мало.

Кроме того, носителями радиоактивности могут быть отдельные предметы, изображенные ниже.

Переключатель со светящимся в темноте тумблером, кончик которого покрашен светосоставом постоянного действия на основе солей радия. Мощность дозы при измерениях «в упор» - около 2 миллиРентген/час.
Часы с циферблатом и стрелками выпуска до 1962 г., флуоресцирующими благодаря радиоактивной краске. Мощность дозы вблизи часов около 300 микроРентген/час.
Обрезки отработавших труб из нержавеющей стали, применявшихся в технологических процессах на предприятии атомной промышленности, но каким-то образом попавшие в металлолом. Мощность дозы может быть весьма значительной.
Переносной свинцовый контейнер, внутри которого может находиться миниатюрная металлическая капсула, содержащая радиоактивный источник (например, цезий-137 или кобальт-60). Мощность дозы от источника без контейнера может быть очень большой.