Геологическая разведка

Скопления нефти и газа связаны с геологическим строением недр Земли, поэтому изучение этого строение и составление геологических карт регионов лежит в основе всех методов поиска нефти и газа.

Геофизика — комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твёрдой Земли (земную кору,мантию

, жидкое внешнее и твёрдое внутреннее ядро), физику океанов, поверхностных вод суши (озёр, рек, льдов) и подземных вод, а также физику атмосферы(метеорологию, климатологию, аэрономию).

Разведочной геофизикой называют раздел геофизики, посвящённый изучению строения Земли с целью поиска и уточнения строения залежей полезных ископаемых, а также выявлению предпосылок для их образования. Разведочная геофизика проводится на суше, акватории морей, океанов и пресных водоемов, в скважинах, с воздуха и из космоса. Разведочная геофизика является важной составляющей геологоразведочного процесса благодаря высокой эффективности, надёжности, дешевизне и скорости проведения.

Геофизические методы исследований — это научно-прикладной раздел геофизики, предназначенный для изучения верхних слоев Земли, поисков и разведки полезных ископаемых, инженерно-геологических, гидрогеологических, мерзлотно-гляциологических и других изысканий и основанный на изучении естественных и искусственных полей Земли. Геофизика, находясь на стыке нескольких наук (геологии, физики, химии, математики, астрономии и географии), изучает происхождение и строение различных физических полей Земли и протекающих в ней и ближнем космосе физических процессов. Предметом исследования научно-прикладных разделов геофизики является осадочный чехол, кристаллический фундамент, земная кора и верхняя мантия с общей глубиной до 100 км.

Общее число геофизических методов или модификаций превышает 100 и существуют различные их классификации. Методы ГИС отличаются большим разнообразием и используют ВСЕ ВИДЫ ФИЗИЧЕСКИХ ПОЛЕЙ (электрические, электромагнитные, тепловые, ядерных излучений, гравитационные, механических напряжений). По используемым физическим полям Земли их подразделяют на гравиразведку, магниторазведку, электроразведку, сейсморазведку, ядерную геофизику и терморазведку, называемые также гравиметрическими, магнитными, электромагнитными, сейсмическими, ядерно-физическими и термическими геофизическими методами исследований. В первых двух используют естественные, а в остальных — естественные и искусственные физические поля Земли. К естественным (пассивным) физическим полям Земли относят гравитационное (поле тяготения), геомагнитное, электромагнитное (разной природы), сейсмическое (поле упругих колебаний в результате землетрясений), радиоактивное и термическое. К искусственным (активным) относят следующие физические поля: электрическое, электромагнитное, сейсмическое (поле упругих колебаний, вызванных искусственным путем), вторичных ядерных излучений, термическое (поле температур).

Каждое физическое поле определяется своими параметрами. Например, гравитационное поле характеризуют ускорением свободного падения g и вторыми производными потенциала, геомагнитное поле — полным вектором напряженности и различными его элементами, электромагнитное — векторами магнитной и электрической компонент, упругое — временем и скоростями распространения различных упругих волн, ядерно-физические — интенсивностями естественного и искусственно вызванных излучений, термическое — распределением температур и тепловых потоков.

Принципиальная возможность проведения геологической разведки на основе изучения различных физических полей Земли определяется тем, что распределение параметров полей на поверхности или в глубине Земли, в море, океане или в воздушной оболочке зависит не только от общего строения Земли и околоземного пространства, а также происхождения или способа создания полей, т. е. от нормального поля, но также и от неоднородностей геологической среды, создающих аномальные поля. Иными словами, геофизика служит для выявления аномалий физических полей, обусловленных неоднородностями геологического строения, связанных с изменением физических свойств и геометрических параметров слоев, геологических или техногенных объектов.

Геофизическая информация отражает физико-геологические неоднородности среды в плане, по глубине и во времени. При этом возникновение аномалий связано с тем, что объект поисков, называемый возмущающим, либо сам создает поля в силу естественных причин, например, повышенной намагниченности, либо искажает искусственное поле вследствие различий физических свойств, например, отражение упругих или электромагнитных волн от контактов разных толщ.

Если геологические и геохимические методы являются прямыми, методами близкого действия, основанными на непосредственном, точечном или локальном изучении минерального, петрографического или геохимического состава вскрытых выработками пород, то геофизические методы являются косвенными, дальнодействующими, обеспечивающими равномерность, объемный характер получаемой информации и практически неограниченную глубинность. При этом производительность геофизических работ значительно выше, а стоимость в несколько раз меньше по сравнению с разведкой с помощью неглубоких (до 100 м) и в сотни раз меньше при бурении глубоких (свыше 1 км) скважин. Повышая геологическую и экономическую эффективность изучения недр, геофизические методы исследования являются важнейшим направлением современной геологии.

Выявление геофизических аномалий — сложная техническая и математическая проблема, поскольку оно проводится на фоне не всегда однородного и спокойного нормального поля, а среди разнообразных помех геологического, природного, техногенного характера (неоднородности верхней части геологической среды, неровности рельефа, космические, атмосферные, климатические, промышленные и другие помехи).

Измерив те или иные физические параметры по системам обычно параллельных профилей или маршрутов и выявив аномалии, можно судить о свойствах пород и о геологическом строении района исследований.

Получаемые аномалии определяются, прежде всего, изменением физических свойств горных пород по площади и по глубине. Например, гравитационное поле зависит от изменения плотности пород; магнитное поле — магнитной восприимчивости и остаточной намагниченности; электрическое и электромагнитное поля — от удельного электрического сопротивления пород, диэлектрической и магнитной проницаемости, электрохимической активности и поляризуемости; упругое поле — от скорости распространения различных типов волн, а последние, в свою очередь, — от плотности и упругих констант; ядерные — от естественной радиоактивности, гамма- и нейтронных свойств; термическое поле — от теплопроводности теплоемкости и др.

Физические свойства разных горных пород меняются иногда в небольших (например, плотность — от 1 до 6 г/см3), а иногда в очень широких пределах (например, удельное электрическое сопротивление—от 0,001 до 1015 Ом-м). В зависимости от целого ряда физико-геологических факторов одна и та же порода может характеризоваться разными свойствами и, наоборот, разные породы могут не различаться по некоторым свойствам. Изучение физических свойств горных пород и их связи с минеральным и петрофизическим составом, а также водонефтегазонасыщенностью и является предметом исследований петрофизики.

Известны различные прикладные (целевые) классификации геофизических методов. Региональные геофизические методы предназначены для внемасштабных глубинных исследований на глубинах до 100 км (глубинная геофизика), мелко-среднемасштабных структурных исследований на глубинах около 10 км (структурная геофизика) и крупномасштабных картировочно-поисковых съемок на глубинах до 2 км (картировочно-поисковая геофизика). К разведочной относят нефтегазовую, рудную, нерудную и угольную геофизику, применяемую для поисков и разведки месторождений соответствующих полезных ископаемых. Иногда региональную и нефтегазовую геофизику объединяют в структурную. Инженерно-гидрогеологическая геофизика объединяет методы, предназначенные для инженерно-геологических, мерзлотно-гляциологических, гидрогеологических, почвенно-мелиоративных и техногенных исследований. Под техногенной геофизикой понимают методы мониторинга, т. е. системы изучения, слежения и контроля за изменением состояния среды в результате деятельности человека (в том числе контроля загрязнения и экологической охраны подземных вод и геологической среды). Сюда же можно отнести методы изучения условий передачи энергии, коррозии металлических конструкций, поисков погребенных объектов, например, археологических и др. Таким образом, возникнув как прикладные геологоразведочные, геофизические методы исследования находят применение и в других областях человеческой деятельности.

По месту проведения работ геофизические методы исследования подразделяют на следующие технологические комплексы: аэрокосмические (дистанционные), полевые (наземные), акваториальные (океанические, морские, речные), подземные (шахтно-рудничные) и геофизические исследования скважин (ГИС) или каротаж. Иногда дистанционные методы изучения поверхности и глубин Земли с помощью самолетов, вертолетов, искусственных спутников, пилотируемых космических кораблей и орбитальных станций не считают геофизическими, поскольку при этих работах преобладают съемки в видимом диапазоне спектра электромагнитных волн (фото- и телевизионная съемки). Однако, кроме таких визуальных наблюдений, все чаще используют дистанционные методы невидимого диапазона электромагнитных волн: инфракрасные, радиолокационные (радарная и радиотепловая), радиоволновые, ядерные, магнитные и другие, которые являются сугубо геофизическими. Особое место занимают геофизические исследования скважин, отличающиеся от прочих геофизических методов специальной аппаратурой и техникой наблюдений и имеющие большое прикладное значение при документации разрезов скважин.

Верхние оболочки Земли являются предметом исследования не только геофизических методов, но и других наук: геологии со всеми разделами, геохимии, географии и др. Геофизические методы исследования, базируясь на этих науках, являются, прежде всего, геологическими. Вместе с тем, давая другим наукам о Земле всевозможную информацию, они изменяют сам характер геологоразведочных работ.

Теория геофизических методов исследований — физико-математическая. Математическое моделирование, т. е. решение геофизических задач с помощью математики, настолько сложно, что здесь используют передовые ее достижения и самый высокий уровень компьютеризации. На геофизических задачах в немалой степени совершенствуется математический аппарат. Математическое решение прямой задачи геофизики, т.е. определение параметров поля по известным свойствам и размерам геологических тел, хотя иногда очень сложно, но единственно. Вместе с тем, одно и то же распределение параметров физического поля может соответствовать различным соотношениям физических свойств и размеров геологических объектов. Иными словами, математическое решение обратной задачи геофизики, т. е. определение размеров геологических объектов и свойств слагающих их пород по наблюденному полю, не только значительно сложнее, но и, как правило, не единственно.

В процессе геолого-геофизических изысканий составляются следующие виды карт (кроме геологических профилей и схем корреляции):

– общих мощностей горизонта, которые обычно строят для изучения условий осадконокопления, палеотектонических особенностей и др.;

– эффективных мощностей горизонта (пласта), на которых показывают суммарные мощности только проницаемых прослоев-коллекторов. Эти карты применяют при подсчете запасов нефти и газа, проектировании и анализе разработки нефтяных залежей. Кроме того, исходя из практических задач, наряду с картой эффективной мощности строят карты эффективной нефтенасыщенной мощности пласта, на которой показывают лишь мощности пористых нефтенасыщенных пластов;

– распространения коллекторов или зональных интервалов, на основе которых оценивают прерывистость продуктивных пластов. Чаще всего такие карты совмещают с картами эффективных мощностей;

– распространения зон слияния пластов, которые позволяют установить возможные зоны перетоков нефти или обводнения за счет слияния с водоносным горизонтом;

– пористости и проницаемости, используемые для изучения характера и закономерностей изменения коллекторских свойств пластов. Эти карты составляют лишь в тех случаях, когда по залежи накоплен большой фактический материал, которым более или менее равномерно освещена вся площадь месторождения и если значения указанных параметров значительно изменяются по площади;

– геофизических параметров, характеризующих коллекторские свойства пластов.

Решение обратной задачи — это основное содержание интерпретации данных разведочной геофизики. Оно с достаточной точностью может быть выполнено лишь тогда, когда кроме наблюденного поля из дополнительных источников получены сведения о свойствах пород, залегающих на глубине (например, по данным геофизических измерений в скважинах или на образцах). Большей однозначности интерпретации в определенных условиях можно добиться комплексным изучением нескольких полей.

Методика и аппаратура геофизических методов исследования основаны на использовании механики, электроники, автоматики, вычислительной техники, т. е. способы измерений — физико-технические. При этом современный уровень требований к аппаратуре очень высокий.

Эффективность разведочной геофизики при решении той или иной задачи определяется правильным выбором метода (или комплекса методов), рациональной и высококачественной методикой и техникой проведения работ, качеством геофизической интерпретации и геологического истолкования результатов. Сложность геофизической интерпретации объясняется как неоднозначностью решения обратной задачи, так иногда и приближенностью самого решения. Поэтому из нескольких возможных вариантов интерпретации необходимо выбирать наиболее достоверный, что можно сделать при использовании всех сведений о физических свойствах пород района исследований, их литологии, тектоническом строении, гидрогеологических условиях. Иными словами, лишь при хорошем знании геологии района можно получить наиболее достоверное истолкование результатов геофизических методов исследований, что требует совместной работы геофизиков и геологов при интерпретации. Последнее, очевидно, невыполнимо, если геофизики не имеют прочных знаний по геологическим дисциплинам и слабо знакомы с изучаемым районом, а геологи не разбираются в сущности и возможностях тех или иных методов геофизики.

Возрастание роли геофизики в связи с увеличением глубин и сложности разведки месторождений ведет не к замене геологических методов геофизическими, а к рациональному их сочетанию, широкому использованию всеми геологами данных геофизики. Единство и взаимодействие геофизической и геологической информации — руководящий методологический принцип комплексирования наук о Земле. Объясняется это тем, что возможности каждого частного метода геологоразведки (съемки, бурения, проходки выработок, геофизики, геохимии и др.) ограничены.

Разведочная геофизика является сравнительно молодой наукой, сформировавшейся в 20-е годы XX века. Однако ее физико-математические основы заложены значительно раньше. Так же давно началось использование полей Земли в практических целях. Ранее других методов возникла магниторазведка. Первые сведения о применении компаса для разведки магнитных руд в Швеции относятся к 1640 г. Теория гравитационного поля Земли берет свое начало с 1687 г., когда И. Ньютон сформулировал закон всемирного тяготения. Первыми работами по электроразведке являются наблюдения Р. Фокса (Великобритания) в 1830 г. естественной поляризации сульфидных залежей и Е.И. Рогозина, который в 1903 г. дал первое изложение основ этого метода.

Первыми магниторазведочными работами в России были съемки Курской магнитной аномалии (КМА) профессора МГУ Э.Е. Лейста в 1894 г., а в конце IX века - работы на Урале Д.И. Менделеева и в районе Кривого Рога И.Т. Пассальского. Теоретические работы Э. Вихерта (Германия) и Б.Б. Голицына в начале XX века в области сейсмологии имели самое непосредственное отношение к созданию сейсморазведки. В 1919 г. были начаты магнитные исследования на КМА. Эти работы можно считать началом развития не только отечественной, но мировой разведочной геофизики. В настоящее время по уровню теории и практическому использованию отечественная геофизика занимает передовые позиции в мире. Дальнейший рост минерально-сырьевой базы страны, требующий разведки полезных ископаемых на все больших глубинах и в труднодоступных районах, а также расширение объемов горнотехнических, инженерно-гидрогеологических, мерзлотно-гляциологических, почвенномелиоративных, техногенных изысканий приведут к дальнейшему расширению применения геофизических методов исследований, их широкому комплексированию с другими методами, а значит, необходимости их изучения различными специалистами.

Первый поисковый этап – геологическая разведка по сбору данных о геологическом строении с использованием не разрушающих недра методов. Широко применяют также различные геофизические методы (сейсморазведка на суше, магниторазведка с применением авиационной техники и космических аппаратов и др.) с целью воссоздать глубинное строение недр и найти предполагаемые нефтяные и газовые залежи.

Сейсморазведка - раздел разведочной геофизики, включающий методы изучения строения Земли, основанные на возбуждении и регистрации упругих волн. При сейсморазведкеизмеряют скорость распространения взрывной волны в толще горных пород на глубине исследований не более 2-3 км. Для возбуждения колебаний применяется взрывы зарядов тротила в неглубоких скважинах, а также длительное (вибрационное) или короткое (импульсное) ударное воздействие на горные породы. Взрывные источники наносят большой урон окружающей среде. Невзрывные источники могут использовать многократно в одной и той же точке, более управляемы, но гораздо слабее.

Породы земной коры различаются по упругим свойствам — модулю Юнга, коэффициенту Пуассона и плотности, что приводит к тому, что упругая волна распространяется в них с различной скоростью, а на границах сравнительно однородных пластов испытывает явления отражения, преломления и прохождения. Распространяясь в объеме горных пород, упругая волна попадает на границы раздела, изменяет направление и динамические свойства и образуются новые волны. Наличие резких границ раздела между пластами приводит к образованию вторичных волн, интенсивность которых зависит от контрастности границы по упругим свойствам. Чем сложнее строение изучаемой геологической среды, тем больше волн образуется на границах ее раздела. Образовавшиеся вторичные волны содержат информацию о строении и составе горных пород, через которые они проходят.

Для регистрации колебаний упругих волн применяют специальные устройства — сейсмоприемники, располагающиеся на пути следования волн и преобразующие колебания частиц почвы в электрический сигнал. Продольные (раньше изучали только эти волны) и поперченные волны этих упругих колебаний, отраженные от слоев горных пород (с различной плотностью и упругостью), регистрируются сейсмоприемниками (датчиками), которые располагаются по определенной схеме на поверхности изучаемой территории. Получаемые зависимости объединяются в сейсмотрассы (графики колебаний), которые затем объединяются в сейсмограммы. Полученные данные в виде сейсмограмм затем обрабатываются на ПК, и на основе анализа полученных результатов составляется глубинная карта границ залегания тех или иных пород с различными свойствами, по которым можно предположить наличие нефтегазоносных залежей.

Методы сейсморазведки различают по типу используемых полезных волн, по стадии геологоразведочного процесса, по решаемым задачам, по способу получения данных, типу источника колебаний. Выделяют (наиболее важные):

· Метод отраженных волн (основан на выделении волн, однократно отраженных от целевой геологической границы; наиболее востребованный метод)

· Метод преломленных волн (ориентирован на преломленные волны, которые образуются при падении волны на границу двух пластов под определенным углом)

По размерности сейсморазведка различается на 1D, 2D и 3D варианты. Зависит от расстановки пунктов приема возбуждения и приема.

Магниторазведка позволяет изучать с помощью высокочувствительных магнитометров аномалии магнитного поля Земли, которые связаны с различиями магнитных свойств разных пород на глубине до 7 км. Такие найденные аномалии, измеряемые у поверхности Земли, позволяют предположить в ряде случаев существование в недрах складчатых структур или пластов плотных кристаллических пород в изучаемом районе. Замеченное снижение электрического сопротивления недр и служит косвенным признаком возможного скопления нефти и газа. Геомагнетизм исследует магнитное поле Земли (его источники и изменения на протяжении геологической истории Земли), а также магнитные свойства горных пород. Принято считать, что глобальное магнитное поле Земли обусловлено электрическими токами в жидком внешнем ядре, его напряженность изменяется с периодичностью от 100 до 10 000 лет, а полярность подвержена обращениям (инверсиям). Измерения интенсивности и направления намагниченности горных пород позволяют изучать происхождение и изменения во времени геомагнитного поля и служат ключевой информацией для развития теории тектоники плит и дрейфа материков. С целью поисков месторождений полезных ископаемых магниторазведка применяется в виде наземной, морской или аэромагнитной съёмки. Магнитная съемка проводится, как правило, по сети параллельных линий, или профилей. После ввода необходимых поправок строится карта магнитного поля в виде графиков или изолиний. На карте могут находится области с покойного поля и магнитные аномалии — локальные возмущения магнитного поля, вызванные неоднородностями магнитных свойств горных пород. Магниторазведка проводится с целью выявления аномалий как непосредственно связанных с полезным ископаемым, так и с контролирующими залежь тектоническими и стратиграфическими структурами.

Магниторазведка с успехом применяется при поисках железнорудных месторождений, где ее можно рассматривать как прямой метод поисков и где полученные данные могут использоваться для предварительной оценки запасов и качества руд. При поисках других полезных ископаемых магниторазведка как правило применяется в комплексе с другими геофизическими методами и решает в основном задачи геологического картирования.

Гравиразведка. Гравиразведкой или гравиметрией называется геофизический метод, изучающий изменение ускорения свободного падения в связи с изменением плотности геологических тел. Гравиметрическая разведка основана на изучении естественного поля силы тяжести на земной поверхности. Информация об элементах этого поля позволяет по распределению в земной коре геологических тел различать плотности, устанавливать глубинное строение изучаемых площадей.

Физической основой метода является закон всемирного тяготения Исаака Ньютона, в соответствии с которым разные по плотности горные породы создают различные изменения в гравитационном поле. Горные породы имеют определенные и устойчивые плотностные характеристики, определенные сочетания которых создают характерные гравитационные поля (аномальные поля). Интенсивность аномалий определяется контрастностью физических свойств, относительной глубиной объекта, уровнем помех (к ним относятся неоднородности верхней части геологической среды, неровности рельефа, космические, атмосферные, климатические, промышленные и др).

В результате гравиразведки рассчитываются аномалии силы тяжести, обусловленные теми или иными плотностными неоднородностями – прямая задача. Определение местоположения, залегания, формы, размеров и плотности тел по известным аномалиям – обратная задача.

Первым этапом интерпретации результатов является качественная интерпретация – дается видуальное описание характера аномалий силы тяжести по картам и профилям. При этом отмечается форма аномалий, их простирание, примерные размеры, амплитуда. Устанавливается гравитационных аномалий с геологическим строением, выделяются региональные аномалии, связанные со строением земной коры, и локальные аномалии, представляющие разведочные интерес. Региональные аномалии связаны с глубинными аномалиями плотности, крупными структурами земной коры, поверхностью кристаллического фундамента и неоднородностью его состава. Локальные аномалии приурочены к антиклинальным, синклинальным структурам в осадочном чехле и фундаменте, залежам полезным ископаемых.

Гравиразведка активно применяется при региональном исследовании земной коры и верхней мантии, выявлении глубинных тектонических нарушений, поиске полезных ископаемых — преимущественно рудных, выделении алмазоносных трубок взрыва. Гравиразведка позволяет изучать состав горных пород, и их положение в геологическом разрезе, например для магматических с ростом основности возрастает концентрация железистых соединений и плотность.

Для проведения гравиразведки применяются гравиметры, чувствительные приборы измеряющие ускорение свободного падения. Единицей измерения этой величины является Гал или более употребительный мГал. Крупные геологические тела характеризуются аномалиями в десятки и даже сотни мГал. В отечественной практике наиболее широко применяются кварцевые гравиметры ГНУ-КС и ГНУ-КВ.

Электроразведка – совокупность методов изучения строения земной коры и поисков месторождений полезных ископаемых, основанных на изучении естественных и искусственных электромагнитных полей; это геофизический метод, основанный на измерении удельного электрического сопротивления горных пород. Удельное электрическое сопротивление измеряют как по глубине в одной точке (вертикальное электромагнитное зондирование), так и по площади, получая карту сопротивлений (электропрофилирование).

Измерения УЭС пород происходит на поверхности. В землю втыкаются электроды, одни из которых приемные, а другие – питающие. С помощью специальной аппаратуры через питающие электроды подается ток, а на приемных электродах измеряется разность потенциалов. Показания записываются и впоследствии обрабатываются на компьютере.

Важно понимать, что каждому изучаемому геологическому разрезу соответствует его модель – геоэлектрический разрез, представляющий собой совокупность электрических и геометрических характеристик горных пород и руд, слагающих данный разрез. Исследования геологического разреза на глубину называются зондированием, а в горизонтальном направлении на определенной глубине – профилированием.

Результатом вертикального электромагнитного зондирования являются геоэлектрические разрезы, на которых по показаниям сопротивлений выделяют литологические слои. При электропрофилировании основной целью является получение площадных данных, поэтому результатом электропрофилирования является карта сопротивлений.

Методы электроразведки позволяют изучать параметры геологического разреза, измеряя параметры постоянного электрического или переменного электромагнитного поля.

В электроразведке сейчас насчитывается свыше 50 различных методов и модфикаций, предназначенных как для глубинных исследований, так и для изучения верхней части разреза. В зависимости от принципа исследования их можно разделить на следующие группы: методы сопротивлений (метод постоянного тока) и электромагнитные методы.

Методы сопротивлений основаны на пропускании в земле с помощью пары электродов известного постоянного тока и измерении напряжения, вызванного этим током, с помощью другой пары электродов. Зная ток и напряжение можно вычислить сопротивление, а с учетом конфигурации электродов можно установить к какой части подповерхностного пространства это сопротивление относится (вертикально электрическое зондирование – ВЭЗ, электропрофилирование – ЭП, метод заряженного тела - МЗТ). Данные методы, как правило, применяют при региональных, структурно-картировочных и разведочных исследованиях, когда ставятся задачи расчленения геологического разреза на слои и блоки, определения последовательности залегания пластов и картирования тектонических структур.

Следующие методы электроразведки:

· Методы электрохимической поляризации (метод естественного поля – ЕП, метод внешнего поля - ВП)

· Магнитотеллурические методы (магнитотеллурическое зондирование – МТЗ, магнитотеллурическое профилирование – МТП)

· Индуктивные методы (низкочастотные индуктивные методы – НЧИМ, метод переходных процессов – МПП)

· Электромагнитные зондирования (зондирование становлением –ЗС, частотное зондирование – ЧЗ, дистанционные электромагнитные зондирования – ДЭМЗ)

· Радиоволновые методы (радиоволновое зондирование – РВЗ, радиоволновое профилироваие – РВП, георадар)