Ионизирующие излучения

 

Ионизирующее излучение –излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков. Другими последствиями этого взаимодействия являются: упругое соударение и возбуждение атомов. Процесс ионизации является наиболее важным эффектом, на котором построены почти все методы дозиметрии ядерных излучений. Радиоактивный распад приводит к образованию корпускулярных (a, β, нейтронное излучение) и фотонных излучений (g и рентгеновское)
Источник ионизирующего излучения - радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение.Источниками ионизирующего излучения в природе являются:космические излучения,радиоактивные нуклиды, распределенные в земле, воде, продуктах питания, растениях, животных и человеке. Естественный радиационный фон – неотъемлемый фактор окружающей среды, играющий важную роль в жизнедеятельности человека. Техногенный фон создается в процессе преобразовательной деятельности человека - это медицинские обследования; радон, накапливаемый зданиями; атомная энергетика и радиоактивные отходы; строительные материалы; полеты в авиалайнерах; бытовая техника (телевизоры и т.п.), ядерные взрывы и др.   Таблица 10.2.1. Вклад различных источников излучения в облучение организма человека составляет (%)
Медицинское облучение 51,5
Природный радиационный фон 43,4
Ядерные испытания 2,5
Стройматериалы 2,0
Полеты в авиалайнерах 0,3
Телевизоры 0,28
Атомная энергетика 0,08

 

Радиоактивное вещество- вещество в любом агрегатном состоянии, содержащее радионуклиды с активностью, на которые распространяются требования Норм и Правил радиационной безопасности.
Активность (А)- мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени:   где dN - ожидаемое число спонтанных ядерных превращений из данного энергетического состояния, происходящих за промежуток времени dt. Единицей активности является беккерель (Бк). Использовавшаяся ранее внесистемная единица активности кюри (Кu) составляет 3,7 ·1010 Бк.
Альфа-излучение (a-излучение) -ионизирующее излучение, состоящее из ядер гелия, испускаемых при ядерных превращениях. Длина пробега a-частицы в воздухе от 2 до 12 см, при этом на 1 см пути образуется около 50000 пар ионов. С повышением плотности материала проникающая способность излучения резко уменьшается, а количество пар ионов на 1 см пробега резко возрастает. α-частицы можно задерживать плотным листом бумаги.
Бетта-излучение (b-излучение) -электронное (и позитронное) ионизирующее излучение с непрерывным энергетическим спектром, испускаемое при ядерных превращениях. Длина пробега электрона в воздухе достигает 169 см, а в биотканях 2,5 см, при этом он создает в воздухе всего 50 пар ионов на 1 см пути. Поток b-частиц эффективно замедляется металлической фольгой.
Излучение нейтронное –излучение, обусловленное крупными незаряженными частицами - нейтронами, которые сами по себе не вызывают ионизации, но, «выбивая» электроны из их стабильных состояний, создают наведённую радиоактивность в материалах или тканях, сквозь которые они проходят. Представляют большую опасность для живых организмов. Чувствительность живых существ к облучению тем выше, чем сложнее их организм. Ослабление нейтронного излучения эффективно осуществляется водородом, водой, парафином, полиэтиленом и др.
Гамма-излучение (g-излучение) и рентгеновское излучение–коротковолновые электромагнитные (фотонные) излучения ядерного происхождения. Длина волны g-излучения 10-8см. Обладает большой проникающей способностью, половину энергии теряют при прохождении в воздухе 4-5 км. Могут вызывать лучевое поражение организма, вплоть до его гибели. Замедление рентгеновского и g-излучения наиболее эффективно происходит на тяжелых элементах: свинце, железе, тяжелом бетоне, воде и др. материалах.
Биологическое действие ионизирующих излучений – биохимические, физиологические, генетические и др. изменения, возникающие в живых клетках и организмах в результате действия ионизирующих излучений. В основе биологического действия излучений лежат процессы ионизации и возбуждения молекул, радиационно-химические реакции, изменяющие функции биополимеров, главным образом ДНК (рис. 10.2.1.). При значительных дозах облучения усиливаются генетические изменения и различные неблагоприятные последствия, вплоть до гибели клеток и организмов. Рис.10.2.1. Биологическое действие ионизирующих излучений
Лучевая болезнь –заболевание, возникающее при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимые. Острые поражения развиваются при однократном равномерном облучении всего тела и поглощенной дозе 0,25 Гр. При дозе 0,25-0,5 Гр могут наблюдаться скоропроходящие изменения в крови. При дозе 1,5-2,0 Гр возникает легкая форма лучевой болезни (тошнота, рвота в первые сутки после облучения, продолжительная лимфопения). При дозе 2,5-4,0 Гр возникает лучевая болезнь средней тяжести с возможным 20% смертельным исходом. Доза 4,0-6,0 Гр вызывает тяжелую форму лучевой болезни с 50% смертельным исходом. Доза 6 Гр является, безусловно, смертельной.
Естественный радиационный фон –эквивалентная доза ионизирующего излучения, создаваемая космическим излучением и излучением естественно распределенных природных радионуклидов в поверхностных слоях Земли, приземной атмосфере, продуктах питания, воде, в организме человека. Естественный радиационный фон на уровне моря определяется в пределах 0,5 мГр/год, на высоте 1500 м уже в пределах 1 мГр/год. Допустимое значение эффективной дозы от суммарного воздействия природных источников для населения не устанавливается. Снижение облучения достигается путем установления системы ограничений на облучение населения от отдельных природных источников излучения. При проектировании новых зданий жилищного и общественного назначения предусматривают, чтобы среднегодовая активность продуктов радона не превышала 100 Бк/м3, а мощность эффективной дозы гамма-излучения не превышала мощность дозы на открытой местности более чем на 0,2 мкЗв/ч.
Гигиеническое нормирование –осуществляется: - НРБ-99 (СП 2.6.1.758-99) «Нормы радиационной безопасности; - СП2.6.1.799-99 «Основные санитарные правила обеспечения радиационной безопасности». Нормы устанавливают основные дозовые пределы облучения (допустимая доза облучения) и допустимые уровни многофакторного воздействия и контрольные уровни для трех категорий населения. При нормировании учитывают как детерминированный (пороговый) эффект (табл.3) действия радиации, так и стохастический (беспороговый).  
Таблица 10.2.2. Основные пределы доз
Нормируемые величины Пределы доз
персонал (группа А) население
Эффективная доза 20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год
Эквивалентная доза за год в хрусталике глаза 150 мЗв 15 мЗв
коже 500 мЗв 50 мЗв
кистях и стопах 500 мЗв 50 мЗв

 

Пределы доз персонала группы Б равны 1/4 значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) - 1000 мЗв, а для населения за период жизни (70 лет) - 70 мЗв.

При проведении профилактических медицинских рентгенологических исследований и научных исследований практически здоровых лиц годовая эффективная доза облучения этих лиц не должна превышать 1 мЗв.

Детерминированный эффект -радиационный эффект (табл. 10.2.3.), который обязательно возникнет при облучении индивидуума в дозе, превышающей пороговую. Тяжесть проявления эффекта возрастает с увеличением дозы. Каждый эффект имеет свою пороговую дозу, однако, она в ограниченной степени может также зависить от облучаемого индивидуума.

 

Таблица 10.2.3.

Дозовые пороги возникновения некоторых детерминированных эффектов облучения

Состояние При кратко-временном облучении, Зв При хроническом многолетнем облучении, Зв/год
Легкое угнетение кроветворения (лейкоцитопения, нарушение иммунитета) 0,15 0,40
Временная стерильность мужчин 0,15 0,40
Постоянная стерильность мужчин 3,5-6,00 2,00
Постоянная стерильность женщин 2,5-6,00 0,2 (после накопления дозы ≥6 Зв)
Помутнение хрусталика глаза 5,00 0,15 (после накопления дозы ≥8,00 Зв)
Легкая степень лучевой болезни (гамма и рентгеновское облучение) 1..2  
Тяжелая лучевая болезни, гибель 50% (гамма и рентгеновское облучение) 4..6  
Кишечная форма лучевой болезни (гамма и рентгеновское облучение) ≥10  
Стохастический эффект –беспороговый эффект,вероятность развития которого увеличивается при больших дозах, а тяжесть проявления от дозы не зависит. Стохастические эффекты могут быть соматическими (рак, лейкемия) или генетическими и имеют, как правило, отдаленные по времени (до 30-40 лет) последствия.
Категории населения – согласно НРБ-99: категория А – лица, которые постоянно или временно работают непосредственно с источниками ионизирующих излучений; категория Б – лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию радиоактивных веществ и др. источников излучения, применяемых в учреждении или удаляемых во внешнюю среду; категория В – население страны, республики, края, области.
Доза облучения –количество энергии ионизирующего излучения, поглощаемой в 1г вещества, характеристика радиационной опасности. Различают: экспозиционную, поглощенную, эквивалентную и эффективную дозу.
Экспозиционная доза –характеризует излучение по эффекту ионизации и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц, в единице массы атмосферного воздуха. Выражается в кулонах/килограмм (Кл/кг) в системе СИ. Внесистемной единицей гамма или рентгеновского излучения является рентген (Р).
Рентген –внесистемная единица экспозиционной дозы. 1Р соответствует образованию 2,1. 109 пар ионов в 1см3 воздуха при 0оС и давлении 760 мм рт. ст. 1Р=2,58.10-4 Кл/кг.
Поглощенная доза (D) - величина энергии ионизирующего излучения, переданная веществу:   где de - средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме, а dm - масса вещества в этом объеме. Энергия может быть усреднена по любому определенному объему, и в этом случае средняя доза будет равна полной энергии, переданной объему, деленной на массу этого объема. В единицах СИ поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название - грей (Гр). Использовавшаяся ранее внесистемная единица 1 рад равна 0,01 Гр.
Грей – единица поглощённой дозы излучения в СИ, обозначается Гр. Названа в честь английского ученого Грея. 1 Гр равен энергии в 1 Дж, поглощенной в 1 кг вещества. 1 Гр = 1 Дж/кг = 100 рад. Доза излучения 3-5 Гр является смертельной для 50% облученных – смерть наступает в течение одного-двух месяцев вследствие поражения клеток костного мозга. Доза облучения 10-50 Гр – на 100% смертельна, смерть наступает через одну-две недели от кровоизлияния в желудочно-кишечный тракт. Доза 100 Гр вызывает смерть в результате поражения центральной нервной системы в течение нескольких часов или дней.
Эквивалентная доза (HT,R) - поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, WR:   где DT,R - средняя поглощенная доза в органе или ткани, а WR - взвешивающий коэффициент для излучения R. При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.     Единицейэквивалентной дозы является зиверт (Зв).
Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (WR) - используемые в радиационной защите множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения в индуцировании биологических эффектов (табл. 10.2.4.).   Таблица 10.2.4. Значения коэффициентов при внешнем облучении
Фотоны любых энергий
Электроны и мюоны любых энергий
Нейтроны с энергией менее 10 кэВ  
от 10 кэВ до 100 кэВ
и от 2 МэВ до 20 МэВ
от 100 кэВ до 2 МэВ
более 20 МэВ
Протоны с энергией более 2 МэВ, кроме протонов отдачи
Альфа-частицы, осколки деления, тяжелые ядра