Лекция 4. Сложное движение точки и тела

Рис.46 Рис.47

Рис.45

 

Построенная таким путем точка Q и будет мгно­венным центром ускорений. В самом деле, известно что

,

где численно . Подставляя сюда значение AQ находим, что . Кроме того, вектор должен образовывать с ли­нией AQ угол , следовательно, вектор параллелен , но направлен в про­тивоположную сторону. Поэтому и .

Если точку Q выбрать за полюс, то так как , ускорение любой точки М тела, будет

.

При этом численно

.

Следовательно, ускорения точек плоской фигуры определяются в данный мо­мент времени так, как если бы движение фигуры, было вращением вокруг мгновенного центра ускорений Q. При этом

,

т.е. ускорения точек плоской фигуры пропорциональны их расстояниям от мгно­венного центра ускорений. Картина распределения ускорений точек плоской фигуры в данный момент времени показана на рис.46.

Следует иметь в виду, что положения мгновенного центра скоростей Р и мгно­венного центра ускорений Q в данный момент времени не совпадают. Например, если колесо катится по прямолинейному рельсу (см. рис.47), причем скорость его центра С постоянна (), то мгновенный центр скоростей находится в точ­ке Р (), но при этом, как было показано ; следовательно, точка Р не является одновременно мгновенным центром ускорений.

 

Мгновенный центр ускорений в этом случае находится, очевидно, в точке С, так как она дви­жется равномерно и прямолинейно и . Центры скоростей и ускорений сов­падают тогда, когда фигура (тело) вращается вокруг неподвижной оси.

Понятием о мгновенном центре ускорений удобно пользоваться при решении некоторых задач.

 

В данной лекции рассматриваются следующие вопросы:

1. Сложное движение точки.

2. Относительное, переносное и абсолютное движения.

3. Теорема сложения скоростей.

4. Теорема сложения ускорений. Ускорение Кориолиса.

5. Сложное движение твердого тела.

6. Цилиндрические зубчатые передачи.

7. Сложение поступательного и вращательного движений.

8. Винтовое движение.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Сложное движение точки.