Лекция 3. Плоскопараллельное движение твердого тела. Определение скоростей и ускорений.

Рис.27

Рис.26

Рис.25

Рис.24

Рис.23

Рис.22

Рис.21

Рис.20

 

Когда углы Эйлера равны нулю, под­вижные оси совпадают с непод­вижными. Чтобы опреде­лить положение тела, соот­ветст­вующее заданным углам Эйлера, производим следующие действия. Сначала подвижные оси, а значит и тело, поворачи­ваем на угол вокруг оси . При этом оси и отойдут от осей и в гори­зон­тальной плоскости и ось займёт по­ложение (рис.20). Затем тело вращаем вокруг но­вого поло­жения оси (прямой ) на угол . Ось отойдёт от оси на этот угол , а ось приподнимется над горизонтальной плоскостью. Наконец, тело (и подвижные оси) вращаем вокруг нового положения оси на угол . Ось отойдёт от положения в на­клонной плоскости, перпендикуляр­ной оси . Это положение тела и будет соответствовать углам Эйлера (на рисунке само тело не пока­зано).

Линия пересечения неподвижной плоскости и подвижной , прямая , называ­ется линией узлов. Угол называется углом прецессии, угол углом нутации, угол углом собственного вращения. Эти названия углов пришли из теории гироскопов.

При движении тела углы Эйлера изменя­ются по определённым законам которые называются уравнениями вра­щения.

На примере вращающегося волчка можно лучше разобраться в этих углах Эйлера (рис.21). Ось волчка описывает конус вокруг неподвижной оси . Это вращение определяется углом (говорят: волчок совершает прецессию). Отклонение оси волчка от вертикали – угол нутации .

А вращение волчка вокруг своей оси , определяемое углом – собственное вращение.

 

2) Теорема Даламбера – Эйлера. Мгновенная ось вращения.

Проведём в теле сферическую поверх­ность произвольного радиуса с центром в неподвижной точке (рис.22).

 

По­кажем у тела какие-нибудь две точки и , расположенные на этой сфере. Со­единим их по сфере дугой наибольшего радиуса (кратчайшее расстояние между точками). Переместим тело в новое по­ло­жение. Точки, а значит и дуга, займут по­ложение и . Соединим точки и и дугами большого радиуса и . Посередине этих дуг прове­дём им перпендикулярные дуги и най­дём их точку пересечения . Соединим эту точку с точками . Получим два сфе­рических треугольника и , расположенных на этой сфере. Эти два треугольника равны, как треугольники с равными сторонами (, а и – как дуги равноудалённые от пер­пендикуляров). Так как эти два треугольника расположены на одной сфере и имеют общую вершину , то их можно совместить поворотом сферы, а значит и тела, вокруг прямой .

Поэтому можно сделать вывод, что тело с одной неподвижной точкой можно переместить из одного положения в другое поворотом вокруг некоторой оси, проходящей через не­подвижную точку .Это утверждение – есть теорема Даламбера-Эйлера.

Конечно, такое перемещение не яв­ля­ется истинным движением тела. На самом деле тело переходило из первого положе­ния в другое каким-то другим, наверное бо­лее сложным путём. Но, если время такого пере­хода мало, то это перемещение будет близко к действительному. А при можно предположить, что для данного момента времени тело поворачива­ется вокруг некоторой оси Р, проходя­щей через неподвижную точку , вращаясь вокруг неё с угловой скоро­стью . Конечно, для каждого дру­гого момента времени эта ось рас­поло­жена иначе. Поэтому осьназывают мгновенной осью вращения,а угло­вую скорость мгновенной угловой скоростью, вектор которой на­прав­лен по оси.

3) Скорость точек тела.

По теореме Даламбера-Эйлера за малое время движение тела можно представить как вращение вокруг неподвижной оси с некоторой угловой скоростью (рис.23).

 

Тогда скорость точки : В пределе, при , угловая скорость будет приближаться к мгновенной угловой скорости , направленной по мгновенной оси вращения , а скорость точки - к истинному значению:

.

Но таким же образом находится скорость точки при вращении тела вокруг оси, по которой направлен вектор , в нашем случае – по мгновенной оси вращения . Поэтому скорость точки можно определить как скорость её при вращении тела вокруг мгновенной оси . Величина скорости (рис.23).

Определение скоростей то­чек тела значительно упроща­ется, если извест­на мгновенная ось вращения . Иногда её можно найти, если уда­стся обна­ружить у тела хотя бы ещё одну точку, кроме , скорость кото­рой в данный момент равна нулю, и провести осьиз не­подвижной точки О через эту точку. Так как мгновенная ось вращения – геометрическое ме­сто точек, скорости которых равны нулю в данный момент времени.

Пример 6. Водило , вращаясь вокруг вертикальной оси с угловой скоростью , застав­ляет диск радиуса кататься по горизон­тальной плоскости (рис.24).

 

Если представить диск как ос­нование конуса с вершиной в не­подвиж­ной точке , то движение диска можно назвать вращением вокруг этой неподвижной точки .

Так как скорость точки касания диска с плоскостью равна нулю, то мгновенная ось вращенияпроходит через эту точку. И вектор мгновенной угловой скорости будет направлен по этой оси.

Точка вместе с водилом вращается вокруг оси . Поэтому её ско­рость (рис.24). Эта скорость определяет направление вращения диска вокруг оси и направление вектора . Величина угловой ско­рости (h – рас­стояние от до оси ). Теперь можно найти скорость любой точки диска, рассматривая его движение как вращение вокруг оси . Так, например, скорость точки : . Так как и , то и

 

4) Ускорение точек тела.

Сначала определим угловое ускорение тела . При движении тела вектор угловой скорости изменяется и по величине, и по направлению. Точка распо­ложен­ная на его конце будет двигаться по некоторой траектории со скоростью (рис.25).

 

Если рас­сматривать вектор как ра­диус-вектор этой точки, то .

Итак. Угловое ускорение тела можно опреде­лить как скорость точки, расположенной на конце вектора угловой скорости:

.

Этот результат называется теоремой Резаля.

Теперь обратимся к определению ускорения точек. Ускорение какой-либо точки тела

,

есть сумма двух векторов.

Первый вектор . Модуль его , где h1 – расстояние от точки до вектора . Направлен он перпендику­лярно и . Но таким же способом определяет­ся касательное ускорение. Поэтому первую состав­ляющую ускорения определяют как ка­сательное ускорение, предпола­гая, что тело вращается вокруг оси, совпадающей с векто­ром . И обо­значается этот вектор ускорения так

Второй вектор Модуль его , но , т.к. векторы и перпендикулярны друг другу.

 

Значит , где h2 – расстояние от точки М до мгновенной оси , до вектора .

Направлен вектор перпендикулярно и , т.е. так же как вектор нормального ускорения при вращении вокруг оси , или вектора . Поэтому этот вектор ускорения и обозначают, соответственно, так:

Итак, ускорение точек тела, вращающегося вокруг неподвижной точки, определяется как сумма двух ускорений:

Этот результат называется теоремой Ривальса.

Заметим, что в общем случае векторы и не совпадают и угол между и не равен , векторы не перпендикулярны друг другу, как это было при вращении тела вокруг неподвижной оси.

 

Пример 7. Продолжим исследование движения диска (пример 6). Модуль угловой скорости Значит вектор вместе с осью , которая всегда проходит через точку касания диска с плоскостью, вращается вокруг оси и описывает конус. Точка М на конце вектора движется по окружности радиуса с угловой скоро­стью . Поэтому угловое ускорение диска .

Откладывается вектор из неподвижной точки О. Направлен он, как скорость , перпендикулярно водилу , параллельно оси х (рис. 27).

 

Найдём ускорение точки В.

Ускорение Направлен вектор перпендикулярно и расположен в плоскости .

Ускорение Вектор направлен по , перпендикулярно мгновенной оси . Модуль вектора найдём с помощью проекций на оси :

Значит

 

В данной лекции рассматриваются следующие вопросы:

1. Плоскопараллельное движение твердого тела.

2. Уравнения плоскопараллельного движения.

3. Разложение движения на поступательное и вращательное.

4. Определение скоростей точек плоской фигуры.

5. Теорема о проекциях скоростей двух точек тела.

6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

7. Решение задач на определение скорости.

8. План скоростей.

9. Определение ускорений точек плоской фигуры.

10. Решение задач на ускорения.

11. Мгновенный центр ускорений.