Вращение тела вокруг неподвижной точки
Рис.19
Рис.17 Рис.18
Рис.15 Рис. 16
2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся формулами , .
В нашем случае . Подставляя значение в выражения и , получим:
или окончательно:
, .
Касательная составляющая ускорения направлена по касательной к траектории (в сторону движения при ускоренном вращении тела и в обратную сторону при, замедленном); нормальная составляющая всегда направлена по радиусу МС к оси вращения (рис.16). Полное ускорение точки М будет или .
Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом , который вычисляется по формуле . Подставляя сюда значения и , получаем .
Так как и имеют в данный момент времени для всех точек тела одно и то же значение, то ускорения всех точек вращающегося твердого тела пропорциональны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол с радиусами описываемых ими окружностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис.18.
3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно для векторов и , проведем из произвольной точки О оси АВ радиус-вектор точки М (рис. 17). Тогда и по формуле
или .
Таким образом, модуль векторного произведения равен модулю скорости точки М. Направления векторов и тоже совпадают (оба они перпендикулярны плоскости ОМВ) и размерности их одинаковы. Следовательно, - формула Эйлера, т.е. вектор скорости любой точки вращающегося тела равен векторному произведению угловой скорости тела на радиус-вектор этой точки.
Пример 5.Маятник качается в вертикальной плоскости так, что . Длина (рис. 19)
Маятник вращается вокруг горизонтальной оси , перпендикулярной вертикальной плоскости. Угловая скорость угловое ускорение
Например, при (вращение по часовой стрелке); (угловое ускорение направлено также по часовой стрелке). Вращение в этом положении ускоренное.
Скорость точки : (определяется модуль скорости). Направлен вектор скорости соответственно направлению угловой скорости – в сторону вращения.
.
Нормальное ускорение
касательное ускорение . (Определён опять модуль вектора ускорения. Направлен вектор вниз, как указывает угловое ускорение).
Величина полного ускорения точки
Название такого вида движения довольно точно его определяет. Часто это движение называют сферическим движением потому, что все точки тела движутся по сферическим поверхностям.
Наглядным примером такого движения является волчок, закономерности движения которого лежат в основе гироскопических приборов.
1) Углы Эйлера. Уравнения вращения тела с одной неподвижной точкой.
Положение тела определяется тремя углами. Используются различные системы углов. Например, корабельные углы, самолётные углы и др. Но самыми распространёнными являются углы Эйлера: (пси), (тета), (фи).
Положение тела определяется следующим образом. Назначаются две системы декартовых осей. Первая система – неподвижные оси . Начало которых берётся в неподвижной точке тела (рис. 20). Вторая система, оси , связывается с телом. Поэтому положение тела будет определяться как положение этих осей относительно неподвижных.