Теорема о параллельном переносе силы.
Рис.26
Рис.25
Рис. 4.4.
Сложив силы, приложенные к точкам А и В, построением параллелограммов, получим их равнодействующие и . Так как , то эти силы и будут образовывать пару, момент которой , где – радиус-вектор точки В, совпадающий с АВ.
Так как , то момент полученной пары
.
Следовательно, в результате сложения пар, расположенных в пересекающихся плоскостях, получится пара сил. Момент её будет равен векторной сумме моментов слагаемых пар.
При сложении нескольких пар, действующих в произвольных плоскостях, получим пару с моментом
.
Конечно, эта результирующая пара будет располагаться в плоскости перпендикулярной вектору .
Равенство нулю результирующей пары будет означать, что пары, действующие на тело, уравновешиваются. Следовательно, условие равновесия пар
.
Если пары расположены в одной плоскости, векторы моментов их будут параллельны. И момент результирующей пары можно определить как алгебраическую сумму моментов пар.
Например, пары, показанные на рис.26, расположены в одной плоскости и моменты их:
m1=2 Hсм , m2=5 Hсм, m3=3 Hсм. Пары уравновешиваются, потому что алгебраическая сумма их моментов равна нулю:
.
Равнодействующая системы сходящихся сил непосредственно находится с помощью аксиомы параллелограмма сил. Для двух параллельных сил эта задача была решена путем приведения их к сходящимся силам. Очевидно, что аналогичную задачу легко будет решить и для произвольной системы сил, если найти и для них метод приведения к силам, приложенным в одной точке.
Ранее мы установили, что вектор силы можно переносить по линии действия в любую точку тела.
Попробуем силу (рис. 27) перенести в какую-нибудь точку О, не расположенную на линии действия.