Пара сил. Момент пары.

Рис.21

 

Рассмотрим систему сил, , …, , сходящихся в точке А (рис.21). Возьмем произвольный центр О и проведем через него ось Ох, перпендикулярную к прямой ОА; положительное направление оси Ох выбираем так, чтобы знак проекции любой из сил на эту ось совпадал со знаком ее момента относительно центра О.

Для доказательства теоремы найдем соответствующие выражения моментов m0(), m0(), … . По формуле . Но, как видно из рисунка, , где F1x - проекция силы на ось Ох; сле­довательно

.

Аналогично вычисляются моменты всех других сил.

Обозначим равнодействующую сил , , …, , через, где . Тогда, по теореме о проекции суммы сил на ось, получим . Умножая обе части этого равенства на ОА, найдем:

или,

.

 

Парой сил (или просто парой) называются две силы, равные по величине, параллельные и направленные в противоположные стороны (рис.22). Очевидно, , и .