Энтальпия.
Внутренняя энергия и энтальпия.
Термодинамические величины.
Внутренняя энергия U вещества (или системы) — это полная энергия частиц, составляющих данное вещество. Она слагается из кинетической и потенциальной энергий частиц. Кинетическая энергия — это энергия поступательного, колебательного и вращательного движения частиц; потенциальная энергия обусловлена силами притяжения и отталкивания, действующими между частицами.
Внутренняя энергия зависит от состояния вещества. Изменение внутренней энергии системы Δ U при том или ином процессе можно определять. Пусть в результате какого-нибудь процесса система переходит из начального состояния 1 в конечное состояние 2, совершая при этом работу А и поглощая из внешней среды теплоту Q. В термохимических уравнениях положительной принято считать теплоту, выделенную системой. В уравнениях термодинамики принято обратное условие: положительной считается теплота, поглощенная системой.
Внутренняя энергия системы уменьшится на величину А, возрастет на величину Q и в конечном состоянии будет равна
U2=Ul + Q – А (1)
где U1 и U2— внутренняя энергия системы в начальном (1) и в конечном (2) состояниях. Если обозначить разность U2 — U1 через Δ U, то уравнение можно представить в виде:
Δ U = Q – A (2)
Это уравнение выражает закон сохранения энергии, согласно которому изменение внутренней энергии не зависит от способа проведения процесса, а определяется только начальным и конечным состояниями системы. Однако какая часть энергии пойдет на совершение работы, а какая превратится в теплоту — зависит от способа проведения процесса: соотношение между работой и теплотой может быть различным.
В частности, если в ходе процесса не производится никакой работы, в том числе работы расширения против внешнего давления, т. е., если объем системы не изменяется, то
Δ U = Qv (3)
где Qv — теплота, поглощенная системой в условиях постоянного объема.
Последнее уравнение дает возможность определять изменение внутренней энергии при различных процессах. Например, в случае нагревания вещества при постоянном объеме изменение внутренней энергии определяется по теплоемкости этого вещества:
Δ U = Qv = nCv ΔT (4)
Здесь Cv — молярная теплоемкость вещества при постоянном объеме; п — количество вещества; ΔT —разность между конечной и начальной температурами.
В случае химической реакции, протекающей без изменения объема системы, изменение внутренней энергии равно взятому с обратным знаком тепловому эффекту этой реакции.
Однако чаще в химии приходится иметь дело с процессами, протекающими при постоянном давлении. При этом удобно пользоваться величиной энтальпии Н, определяемой соотношением:
Н = U + PV (5)
При постоянном давлении и при условии, что в ходе процесса совершается только работа расширения (А = PΔV). Работа (А) против силы внешнего давления равна величине этой силы (F), умноженной на путь (Δl), т. е. А = F Δl. Но сила равна давлению (P), (умноженному на ту площадь (S), на которую оно действует: F = PS, откуда А = PS Δl или А = PΔV)
ΔН = ΔU + P ΔV (6)
или
ΔU = ΔН — Р ΔV (7)
Сравнивая последнее уравнение с уравнением внутренней энергии
Δ U = Q – A (8)
видим, что при указанных условиях ΔН = Qр, где где Qр — теплота, поглощенная системой при постоянном давлении.
Последнее уравнение дает возможность определять изменение энтальпии при различных процессах. Такие определения аналогичны определениям внутренней энергии, с той разницей, что все измерения должны проводиться в условиях постоянного давления. Так, при нагревании вещества изменение его энтальпии определяется по теплоемкости этого вещества при постоянном давлении
ΔН = QP = пСр ΔT (9)
где п — количество вещества; Ср — молярная теплоемкость вещества при постоянном давлении.
При изменениях агрегатного состояния вещества и при аллотропных переходах изменение энтальпии равно по величине, но обратно по знаку теплоте соответствующего превращения (плавление, кипение, превращение из одной модификации в другую). Наконец, в случае химической реакции изменение энтальпии равно взятому с обратным знаком тепловому эффекту реакции, проведенной при постоянной температуре и постоянном давлении.
Энтальпия, как и внутренняя энергия, характеризует энергетическое состояние вещества, но включает энергию, затрачиваемую на преодоление внешнего
давления, т. е. на работу расширения. Подобно внутренней энергии, энтальпия определяется состоянием системы и не зависит от того, каким путем это состояние достигнуто.
В случае газов различие между ΔU и ΔН в ходе того или
иного процесса может быть значительным. В случае систем, несодержащих газов, изменения внутренней энергии (ΔU) и энтальпии (ΔН), сопровождающие процесс, близки друг к другу. Это объясняется тем, что изменения объема (ΔV) при
процессах, претерпеваемых веществами в конденсированных (т.е. в твердом или в жидком) состояниях, обычно очень невелики, и величина РΔV мала в сравнении с АН.
Термодинамические величины. Энтропия и энергия Гиббса.
Как уже говорилось, макросостояние системы тем более вероятно, чем большим числом микросостояний оно может осуществиться. Обычно число микросостояний, отвечающих тому или иному макросостоянию системы, очень велико. Это связано с тем, что в макроскопических количествах вещества число частиц колоссально велико, а их положения и скорости при обычных температурах чрезвычайно разнообразны.
Характеризовать в этом смысле состояние системы оказалось удобнее не самой вероятностью осуществления данного макросостояния, а величиной, пропорциональной ее логарифму. Эта величина называется энтропией. Энтропия (S) связана с числом (W) равновероятных микроскопических состояний, которыми можно реализовать данное макроскопическое состояние системы, уравнением
S = k lg W (10),