Полярные координаты
Введем в рассмотрение единичные векторы: , направленный по радиусу-вектору в сторону возрастания , и , повернутый относительно на угол в сторону возрастания угла (рис. 3.9). Единичные векторы и могут быть представлены через единичные векторы координатных осей:
,
.
Рис.3.9. | Рис. 3.10. |
Производные по времени от единичных векторов , определяются соотношениями
, (3.12)
. (3.13)
Радиус-вектор , определяющий положение точки, может быть представлен в виде (рис. 3.9). При движении точки меняются как модуль, так и направление радиуса-вектора , следовательно, и , и являются функциями времени. На основании равенства (3.9) имеем
.
Используя соотношение (3.12), будем иметь
.
Полученная формула дает разложение вектора скорости на две взаимно перпендикулярные составляющие: радиальную и поперечную (рис. 3.10).
Проекции скорости на радиальное и поперечное направления
и (3.14)
называются соответственно радиальной ипоперечной скоростями. Модуль скорости находится по формуле
. (3.15)
3.2.2. Скорость точки при естественном способе задания движения. Пусть точка М движется по какой-либо кривой (рис. 3.11). За промежуток времени точка переместится по кривой из положения М в положение М1. Дуга , если движение точки происходит в сторону положительного отсчета дуги (рис. 3.11 а), и , если движение происходит в противоположную сторону (рис. 3.11 б). На основании (3.9)
имеем .
Перепишем это равенство в виде
.
Так как предел отношения дуги к стягивающей ее хорде равен по модулю единице, а предельное положение секущей ММ1 совпадает с направлением касательной к кривой в точке М, то
,
где – единичный вектор касательной к кривой, направленный в сторону положительного отсчета дуги.
Рис. 3.11. |
Действительно, если , то вектор направлен в сторону (см. рис. 3.11 а), а при вектор направлен в сторону, противоположную (см. рис. 3.11 б). В обоих случаях этот вектор, а следовательно, и его предел , направлены в сторону возрастания дуги (на рис. 3.11 положительное направление отсчета дуги выбрано вправо от начала отсчета М0).
Учитывая, что ,
имеем . (3.16)
Обозначая , получим
. (3.17)
Из формулы (3.17) следует, что . Очевидно, что , если движение происходит в сторону положительного отсчета дуги, и , если движение происходит в противоположную сторону.
Так как проходимый точкой путь всегда положителен, то элемент пути
и, следовательно, модуль скорости можно определить по формуле
.