Скрещивающиеся прямые
Скрещивающиеся прямые линии не пересекаются и не параллельны между собой.
2.5.3.1 Модель ортогонального проецирования
скрещивающихся прямых (рис.25)
Прямые ADи CB (рис.25) не являются параллельными и не пересекаются между собой. Их проекции могут пересекаться
(A0D0∩C0B0=[E0≡J0]),новточку пересеченияпроекций проецируются две разные точки(E и J), принадлежащие разным прямым (Eпринадлежит прямой CB, Jпринадлежит прямойAD).
Проекции скрещивающихся прямых LQ иSKпараллельны (L0Q0 // S0K0),так как прямые лежат в параллельных проецирующих плоскостях.
Рис. 25.Модель ортогонального проецирования
скрещивающихся прямых.
2.5.2.2 Чертежи ортогонального проецирования
скрещивающихся прямых (рис.26)
Пример скрещивающихся прямых общего положения приведен на рис.26 а) и б). Проекции прямых построены в системе двух плоскостей проекций (π1иπ2).
Скрещиваются пары прямых: (AB÷CD), (MN÷KL).
Пример скрещивающихся профильных прямых приведен на рис.26 в). Проекции прямых построены в системе трех плоскостей проекций (π1, π2 и π3). Скрещиваются две прямые: (EF÷PR).
Рис. 26.Скрещивающиеся прямые.
На чертеже (рис.26а и рис.26б), в системе двух плоскостей проекций (π1 и π2) имеются точки, проекции которых на одной из плоскостей проекций совпадают: M” Ξ (V”), H’ Ξ (U’), S” Ξ (Q”).
Условно считают, что точка Vневидима на фронтальной проекции, так как «закрыта» точкой M,а точка U невидима на горизонтальной проекции, так как «закрыта» точкой H. Точно также точка Qневидима на фронтальной проекции, так как «закрыта» точкой S.
На чертеже (рис.26в), в системе трех плоскостей проекций (π1, π2 иπ3) имеются точки, проекции которых на одной из плоскостей проекций (на плоскости π3) совпадают: T’’’Ξ (J’’’).
Проекции «закрытых» точек берут в скобки.