Плоскости общего и частного положения
Способы задания плоскости. Комплексный чертеж плоскости
Рисунок 9
б) Прямые частного положения – это прямые, занимающие по отношению к плоскостям проекций особое положение, т.е. либо параллельные, либо перпендикулярные плоскостям проекций.
Первый подкласс прямых частного положения – прямые уровня. Это прямые, параллельные какой-либо плоскости проекций.
Горизонталь – прямая параллельная горизонтальной плоскости П1. Комплексный чертёж такой прямой изображён на рисунке 10.
|
Рисунок 10
Фронтальная проекция горизонтали всегда параллельна прямой Х, а угол между осью Х и горизонтальной проекцией горизонтали составляет угол между прямой и фронтальной плоскостью проекций. Символическая запись: h // П1; a = Ðh П2.
|
Рисунок 11
Горизонтальная проекция фронтали параллельна оси Х, а угол b - угол наклона фронтали к горизонтальной плоскости проекций; f 2 // П2,
b = Ðf1П1.
Профильная прямая – это прямая, параллельная профильной плоскости П3. Комплексный чертёж профильной прямой изображён на рисунке 12. Горизонтальная и фронтальная проекции профильной прямой перпендикулярны оси Х, а углы a и b - соответственно, углы наклона прямой к плоскостям П1 и П2.
Рисунок 12.
Рисунок 12
Истинная величина прямых уровня или, так называемая натуральная величина, отображена на тех плоскостях, которым параллельны эти прямые.
Второй подкласс прямых частного положения – проецирующие прямые. Это прямые, перпендикулярные какой-либо плоскости проекций. К таким прямым относятся: горизонтально–проецирующая, фронтально-проецирующая и профильно-проецирующая прямые.
Их комплексные чертежи изображены соответственно на рисунке 13 (а, б, в).
а б в
Рисунок 13
Натуральная величина горизонтально-проецирующей прямой – её фронтальная проекция, фронтально-проецирующей прямой – её горизонтальная проекция, а профильно-проецирующей прямой – её горизонтальная и фронтальная проекции.
а) три точки, не лежащие на одной прямой;
Рисунок 14
б) прямая и точка, не лежащая на ней;
Рисунок 15
в) две параллельные прямые;
Рисунок 16
г) две пересекающиеся прямые;
Рисунок 17
д) плоская фигура (многоугольник, круг и т.д.).
Плоскость общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций.
Рисунок 18
Плоскости частного положения аналогично прямой подразделяются на плоскости уровня и проецирующие плоскости. На рисунке 19 (а,б,в) изображены, соответственно, горизонтальная, фронтальная и профильная плоскости. Причём горизонтальная плоскость задана двумя параллельными прямыми, фронтальная и профильная плоскости – двумя пересекающимися прямыми.
а б в
Рисунок 19
На рисунке 20 (а,б,в) показаны проецирующие плоскости. Горизонтально-проецирующая (рис. 20а) задана треугольником, фронтально-проецирующая (рис. 20б) - параллельными прямыми и профильно-проецирующая (рис. 20в) – пересекающимися прямыми.
А б в