Компьютерное моделирование
Классификация математических моделей по цели моделирования
Дескриптивные модели (описательные) описывают моделируемые объекты и явления и как бы фиксируют сведения человека о них. Моделируя движение кометы, вторгшейся в Солнечную систему, описываются (предсказываются) траектория ее полета, расстояние, на котором она пройдет от Земли и т. д. Никаких возможностей повлиять на движение кометы, что-то изменить нет.
Оптимизационные модели служат для поиска наилучших решений при соблюдении определенных условий и ограничений. В этом случае в модель входит один или несколько параметров, доступных влиянию человека, например, известная задача коммивояжера, оптимизируя его маршрут, можно снизить стоимость перевозок.
Многокритериальные модели служат для оптимизации процесса по нескольким параметрам сразу. Например, зная цены на продукты и потребность человека в пище, можно организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс.
Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным. Например, полководец перед сражением в условиях наличия неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный достаточно сложный раздел современной математики - теория игр, изучающий методы принятия решений в условиях неполной информации.
Имитационные модели, в которых модель более или менее полно и достоверно подражает некоторому реальному процессу, т.е. имитирует его. Например, моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, и задаются условия поведения этих шариков при столкновении друг с другом и со стенками (например, абсолютно упругий удар); при этом не нужно использовать никаких уравнений движения.
Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.
Математическая модель исследуемого процесса или явления на определенной стадии исследования преобразуется в компьютерную (вычислительную) модель, которая затем превращается в алгоритм и компьютерную программу. Процесс компьютерного моделирования предполагает использование вычислительной техники для проведения эксперимента с моделью.
Обобщенную схему компьютерного математического моделирования можно представить следующим образом:
Постановка задачи ® Математическое моделирование ® Алгоритмизация ® Программирование ® Расчеты и анализ результатов.