ОРГАНИЗАЦИЯ ОБМЕНА ИНФОРМАЦИЕЙ В ЛВС

КЛАССИФИКАЦИЯ ЛВС

Все множество видов ЛВС можно разделить на четыре группы.

К первой группе относятся ЛВС, ориентированные на массового пользователя. Такие ЛВС объединяют в основном персональные ЭВМ с помощью систем передачи данных, имеющих низкую стоимость и обеспечивающих передачу информации на расстояние 100—500 м со скоростью 2400—19200 бод.

Ко второй группе относятся ЛВС, объединяющие, кроме ПЭВМ, микропроцессорную технику, встроенную в технологическое оборудование (средства автоматизации проектирования, обработки документальной информации, кассовые аппараты и т.д.), а также средства электронной почты. Система передачи данных таких ЛВС обеспечивает передачу информации на расстояние до 1 км со скоростью от 19 200 бод до 1 Мбод. Стоимость передачи данных в таких сетях примерно на 30% превышает стоимость этих работ в сетях первой группы.

К третьей группе относятся ЛВС, объединяющие ПЭВМ, мини-ЭВМ и ЭВМ среднего класса. Эти ЛВС используются для организации управления сложными производственными процессами с применением робототехнических комплексов и гибких автоматизированных модулей, а также для создания крупных систем автоматизации проектирования, систем управления научными исследованиями и т.п. Системы передачи данных в таких ЛВС имеют среднюю стоимость и обеспечивают передачу информации на расстояние до нескольких километров со скоростью 120 Мбод.

Для ЛВС четвертой группы характерно объединение в своем составе всех классов ЭВМ. Такие ЛВС применяются в сложных системах управления крупным производством и даже отдельной отраслью: они включают в себя основные элементы всех предыдущих групп ЛВС. В рамках данной группы ЛВС могут применяться различные системы передачи данных, в том числе обеспечивающие передачу информации со скоростью от 10 до 50 Мбод на расстояние до 10 км. По своим функциональным возможностям ЛВС этой группы мало, чем отличаются от региональных вычислительных сетей, обслуживающих крупные города, районы, области. В своем составе они могут содержать разветвленную сеть соединений между различными абонентами — отправителями и получателями информации.

По топологическим признакам ЛВС делятся на сети следующих типов: с общей шиной, кольцевые, иерархические, радиальные и многосвязные.

В ЛВС с общей шиной (см. рис. 7.2.1, д) одна из машин служит в качестве системного обслуживающего устройства, обеспечивающего централизованный доступ к общим файлам и базам данных, печатающим устройствам и другим вычислительным ресурсам. ЛВС данного типа приобрели большую популярность благодаря низкой стоимости, высокой гибкости и скорости передачи данных, легкости расширения сети (подключение новых абонентов к сети не сказывается на ее основных характеристиках). К недостаткам шинной топологии следует отнести необходимость использования довольно сложных протоколов и уязвимость в отношении физических повреждений кабеля.

Кольцевая топология (рис. 7.2.1, б) характеризуется тем, что информация по кольцу может передаваться только в одном направлении и все подключенные ПЭВМ могут участвовать в ее приеме и передаче. При этом абонент-получатель должен пометить полученную информацию специальным маркером, иначе могут появиться «заблудившиеся» данные, мешающие нормальной работе сети.

Как последовательная конфигурация кольцо особенно уязвимо в отношении отказов: выход из строя какого-либо сегмента кабеля приводит к прекращению обслуживания всех пользователей. Разработчики ЛВС приложили немало усилий, чтобы справиться с этой проблемой. Защита от повреждений или отказов обеспечивается либо замыканием кольца на обратный (дублирующий) путь, либо переключением на запасное кольцо. И в том, и в другом случае сохраняется общая кольцевая топология.

Иерархическая ЛВС (конфигурация типа «дерево») представляет собой более развитой вариант структуры ЛВС, построенной на основе общей шины (см. рис. 7.2.1, г). Дерево образуется путем соединения нескольких шин с корневой системой, где размещаются самые важные компоненты ЛВС. Оно обладает необходимой гибкостью того, чтобы охватить средствами ЛВС несколько этажей в здании или несколько зданий на одной территории, и реализуется, как правки сложных системах, насчитывающих десятки и даже сотни абонентов.

Радиальную (звездообразную) конфигурацию (см. рис. 7.2.1, и) можно рассматривать как дальнейшее развитие структуры «дерево с корнем» с ответвлением к каждому подключенному устройству. В центре сети обычно размещается коммутирующее устройство, обеспечивающее жизнеспособность системы. ЛВС подобной конфигурации находят наиболее частое применение в автоматизированных учрежденческих системах управления, использующих центральную базу данных. Звездообразные ЛВС, как правило, менее надежны, чем сети с общей шиной или иерархические, но эта проблема решается дублированием аппаратуры центрального узла. К недостаткам можно также отнести значительное потребление кабеля (иногда в несколько раз превышающее расход в аналогичных по возможностям ЛВС с общей шиной или иерархических).

Наиболее сложной и дорогой является многосвязная топология, в которой каждый узел связан со всеми другими узлами сети (см. рис. 7.2.1, в). Эта топология в ЛВС применяется очень редко, в основном там, где требуются исключительно высокие надежность сети и скорость передачи данных.

На практике чаще встречаются гибридные ЛВС, приспособленные к требованиям конкретного заказчика и сочетающие фрагменты шинной, звездообразной и других топологий.

Характер топологии сети оказывает влияние на организацию обмена информацией между ее абонентами. Как правило, такой обмен информацией между абонентами сети осуществляется с помощью фиксированных блоков (фрагментов) информации, которые называют пакетами. Любой пакет независимо от типа структуры ЛВС включает в себя адреса получателя и отправителя, собственно данные и, как правило, контрольную сумму:

Каждое устройство принимает пакеты, которые ему адресованы, проверяет корректность полученных данных по контрольной сумме и посылает соответствующий ответ устройству-отправителю. Поскольку одно устройство может получать пакеты от нескольких устройств, адрес отправителя является обязательной частью формата.

Стремительное развитие ЛВС, использование в них технических и программных средств, производимых часто в разных странах, сделали необходимым принятие международных соглашений, стандартов на передачу информации, т.е. на характеристики каналов связи, стыковки ПЭВМ с каналами связи, правила стыковки сетей друг с другом, протоколы межмашинного и межсетевого взаимодействия и т.д. (Уместно вспомнить классический пример, когда в Балтиморе (США) в начале века произошел большой пожар, продолжавшийся около двух суток. Несмотря на то, что пожарных машин прибыло много и даже из соседних городов, пожар уничтожил 70 кварталов города. Причиной трагедии оказалось то, что в каждом городе был свой стандарт стыковки пожарных шлангов с водопроводной сетью, поэтому большинство насосных пожарных машин не смогло подключиться к водопроводу.)

Международная организация по стандартизации ISO подготовила проект эталонной модели взаимодействия открытых информационных сетей. Модель разработана и принята в качестве международною стандарта и включает семь уровней, характеризующих любую существующую систему связи и взаимодействующих на строго иерархической основе по принципу «снизу вверх». Определены следующие уровни взаимодействия: физический, канальный, сетевой, транспортный, сеансовый, прикладной и уровень представления данных.

Физический и канальный уровни образуют нижнюю группу и непосредственно связаны с каналом передачи данных: физический осуществляет сопряжение с каналом, а канальный — управление передачей информации по каналу. Управление каналом — достаточно сложный процесс, включающий:

Ø генерацию стартового канала и организацию начала передачи информации;

Ø передачу информации по каналу;

Ø проверку получаемой информации и исправление ошибок;

Ø отключение канала при его неисправности и восстановление передачи после его ремонта;

Ø генерацию сигнала окончания передачи и перевод канала в пассивное состояние.

В следующую группу входят сетевой и транспортный уровни, которые «прокладывают» путь информации между системой системой-отправителем и системой-получателем и управляют процессом передачи по этому пути.

Третью группу образуют сеансовый, прикладной уровни и уровень представления данных. Они непосредственно связаны взаимодействия прикладных программ пользователей, а также с вводом, хранением, обработкой данных и выдачей результатов. Все процессы, проходящие на перечисленных уровнях, носят название прикладных. Это главные процессы в коммутационных системах; именно ради них создаются сети, в том числе ЛВС.

Каждый из названных выше уровней выполняет указания уровня, расположенного над ним. Так, физический уровень обслуживает канальный уровень, который принимает распоряжения сетевого уровня и т.д. В результате прикладной уровень использует сервис всех остальных уровней процессов взаимодействия.

Задача всех семи уровней — обеспечить надежное взаимодействие прикладных (информационных) процессов. При этом каждый уровень выполняет возложенную на него задачу. Однако уровни работают так, чтобы в нужных случаях можно было проверить работу других уровней. Так, если канальный уровень случайно пропустит ошибку, появившуюся при передаче информации, то ее определит и исправит транспортный уровень.

В принципе в любую структуру ЛВС может быть подключена любая ПЭВМ, если она способна выполнять не только прикладные процессы, но и процессы взаимодействия. Это значит, что машина, ставшая абонентом сети, должна иметь: аппаратуру сопряжения с сетью и передачи данных, специальное программное обеспечение, реализующее процессы взаимодействия, оперативную память достаточной емкости для хранения специального программного обеспечения (как показывает опыт, емкость ОП ПЭВМ должна быть не менее 256 Кбайт).

В любых ЛВС могут использоваться различные физические носители сигналов. Простейшей физической средой является витая пара проводов. Это самый дешевый носитель, но у него есть и недостатки: плохая защищенность от электрических помех, простота несанкционированного подключения, ограничения на дальность и скорость передачи данных.

Многожильные кабели дороже, чем витая пара, но позволяют повысить скорость передачи. Наиболее распространенной средой передачи данных в ЛВС является коаксиальный кабель, обладающий хорошей электрической изоляцией и высокой скоростью передачи данных.

В последнее время все большее применение находят световоды (оптоволоконные кабели), которые имеют небольшую массу, способны передавать информацию со скоростью свыше 1 тыс. Мбит/с, невосприимчивы к электрическим помехам, полностью пожаро- и взрывобезопасны, сложны для несанкционированного подключения.

Возможно использование в ЛВС и радиосреды.