Анодная защита. Кислородная защита.
Анодную защиту применяют при эксплуатации оборудования в хорошо электропроводных средах и изготовленного из легко пассивирующихся материалов — углеродистых, низколегированных нержавеющих сталей, титана, высоколегированных сплавов на основе железа. Анодная защита перспективна в случае оборудования, изготовленного из разнородных пассивирующихся материалов, например, нержавеющих сталей различного состава, сварных соединений. При анодной защите потенциал активно растворяющегося металла смещают в положительную сторону до достижения устойчивого пассивного состояния. В результате происходит не только существенное (в тысячи раз) снижение скорости коррозии металла, но и предотвращается попадание продуктов его растворения в производимый продукт. Смещение потенциала в положительную сторону можно осуществлять от внешнего источника тока, введением окислителей в раствор или введением в сплав элементов, способствующих повышению эффективности протекающего на поверхности металла катодного процесса.
Анодная защита пассивирующими ингибиторами-окислителями основана на том, что в процессе их восстановления возникает ток, достаточный для перевода металла в пассивное состояние. В качестве ингибиторов могут быть использованы соли Fe3+, нитраты, бихроматы и др. Применение ингибиторов позволяет защищать металл в труднодоступных местах — щелях, зазорах. Недостатком этого способа защиты является загрязнение технологической среды.
При анодной защите методом катодного легирования в сплав вводят добавки (чаще благородный металл), на котором катодные реакции восстановления деполяризаторов осуществляются с меньшим перенапряжением, чем на основном металле.
Анодная защита от внешнего источника основана на пропускании тока через защищаемый объект и на смещении потенциала коррозии в сторону более положительных значений.
Установка для анодной защиты состоит из объекта защиты, катода, электрода сравнения и источника электрического тока.
Основным условием возможности применения анодной защиты является наличие протяженной области устойчивой пассивности металла при плотности тока растворения металла не более (1,5- 6) 10-1 А/м2.
Основным критерием, характеризующим состояние поверхности металла, является электродный потенциал. Обычно возможность применения анодной защиты для конкретного металла или сплава определяют методом снятия анодных поляризационных кривых.
При этом получают следующие данные:
• потенциал коррозии металла в исследуемом растворе;
• протяженность области устойчивой пассивности;
• плотность тока в области устойчивой пассивности.
Эффективность защиты определяют как отношение скорости коррозии без защиты к скорости коррозии под защитой.
Как правило, параметры анодной защиты, полученные в лаборатории и производственных условиях, хорошо согласуются между собой.
Существенным ограничением применения анодной защиты является вероятность возникновения локальных видов коррозии в области пассивного состояния металла. Для предотвращения этого явления на основании предварительных исследований рекомендуют такое значение защитного потенциала, при котором локальные виды коррозии не возникают; или в раствор вводят ингибирующие добавки.
В качестве катодов используют малорастворимые материалы, например, Pt, Та, Pb, Ni, платинированную латунь, высоколегированные нержавеющие стали и др. Схема расположения катодов проектируется индивидуально для каждого конкретного случая защиты.
Для успешного применения анодной защиты объект должен отвечать следующим требованиям:
• материал аппарата должен пассивироваться в технологической среде;
• конструкция аппарата не должна иметь заклепок, количество щелей и оздушных карманов должно быть минимальным, сварка должна быть качественной;
• катод и электрод сравнения в защищаемом устройстве должны постоянно находится в растворе.
В химической промышленности для анодной защиты наиболее пригодны аппараты цилиндрической формы, а также теплообменники.
Кислородная защита является разновидностью электрохимической защиты, при которой смещение потенциала защищаемой металлоконструкции в положительную сторону осуществляется путем насыщения коррозионной среды кислородом. В результате этого скорость катодного процесса настолько возрастает, что становится возможным перевод стали из активного в пассивное состояние.
Кислородная защита применяется при коррозии теплоэнергетического оборудования, эксплуатирующегося в воде при высоких температуре и давлении.