Неразрушающие методы контроля
Методы проведения технических экспертиз
Для проведения технических экспертиз применяют две группы методов, различающихся между собой способами проведения необходимых исследований и измерения основных характеристик:
· неразрушающие методы, когда все измерения производятся непосредственно на объекте или на конструкции без повреждения элементов;
· разрушающие методы, связанные с отбором проб или образцов из конструкций и нарушением сплошности материала.
Неразрушающие методы контроля строительных конструкций широко применяются в процессе проведения технических экспертиз зданий и сооружений. Их используют как при приемочном контроле конструкций на заводе-изготовителе, так и непосредственно на объекте при проведении экспертизы.
По физическим принципам исследований эти методы можно классифицировать следующим образом:
1) механические методы;
2) акустические методы;
3) электрофизические методы;
4) методы ионизирующего излучения;
5) радиоволновые методы;
6) тепловые методы;
7) голографические методы;
8) прочие методы.
Механические методы нашли широкое применение в строительстве благодаря своей простоте, удобству и возможности быстро выполнить проверку состояния материала в различных точках конструкции. Прежде всего, это оценка прочности бетона с помощью эталонных молотков К.П.Кашкарова и ИЛ.Физделя. По диаметру отпечатков, полученных при ударе молотком, по эмпирическому графику определяется прочность бетона. Для этих целей также широко применяются склерометры различных типов. В этих приборах о прочности бетона судят по величине отскока стального бойка. Чаще всего их используют в транспортном строительстве при обследовании мостов.
Акустические методы основаны на возбуждении упругих механических колебаний. По параметрам этих колебаний определяют физико-механические характеристики исследуемого материала. В зависимости от частоты колебаний эти методы делят на ультразвуковые (частота 20 тыс. Гц и выше), звуковые (до 20 тыс. Гц) и инфразвуковые (до 20 Гц).
Используют акустические методы, главным образом, для выявления и исследования дефектов конструкций (трещин, расслоения, пустот), проверки качества швов сварных соединений, дефектоскопии клеевых соединений и стыков, определение толщин изделий из металлических сплавов, а также для определения прочностных характеристик бетона по корреляционным зависимостям.
Электрофизические методы обследования делят на магнитные, электрические и электромагнитные.
Магнитные методы применяют для определения дефектов в металле, контроле качества сварных швов. Их использование основано на том, что магнитный поток при наличии дефекта конструкции искривляется и рассеивается.
С помощью электромагнитных методов можно определить толщину металлических элементов, а также контролировать натяжение арматуры в железобетонных конструкциях. Для выявления положения и глубины залегания арматуры в железобетонных конструкциях используются приборы магнитно-индукционного типа.
Электромагнитный метод положен в основу определения влажности древесины. По замеренному электрическому сопротивлению можно судить о состоянии материала в конструкции, пользуясь соответствующими зависимостями между электропроводностью и влажностью для данного сорта древесины.
Неразрушающий контроль с помощью ионизирующего излучения эффективно используют в процессе обследования строительных конструкций для различных целей. Преимущества применения ионизирующего излучения заключаются в возможности быстрого и качественного получения определяемых характеристик.
Контроль рентгеновскими и гамма-излучениями применяется для оценки физико-механических характеристик материалов и качества конструкций. Прежде всего, с его помощью осуществляют дефектоскопию сварных соединений, а также определение упругой составляющей деформации металла. В бетоне и железобетоне производится определение плотности, контроль однородности, а также определение положения и диаметра арматуры и толщины защитного слоя бетона.Для просвечивания деталей и конструкций применяют также источники нейтронного излучения. Наиболее эффективным применением нейтронов оказывается при определении влажности материалов - бетона, древесины и др.
Большие перспективы применения имеет радиоволновой метод контроля (СВЧ). С помощью приборов, разработанных на основе этогс метода, можно оценить такие характеристики, как влажность, плотность пористость строительных материалов, толщину защитного слоя в железобетонных конструкциях.
Также эффективно применение радиоволнового метода при контроле пластмасс, древесины (в том числе и в клееных конструкциях), бетона, железобетона и других материалов. Радиоволновой метод дает возможность исследовать как начальную стадию зарождения очагов нарушения сплошности конструкций, так и ход дальнейшего развития дефектов.
Широкие перспективы при обследовании ограждающих конструкций имеют тепловые методы, на основе которых разработаны специальные приборы - тепловизоры. Они позволяют с высокой точностью проводить теплофизические исследования строительных конструкций.
Принцип действия тепловизоров основан на использовании инфракрасного излучения от внешнего источника, отраженного от исследуемого материала или прошедшего сквозь него. Применение тепловизоров дает возможность оценить общие теплопотери здания, обнаружить усадку теплоизоляции ограждающих конструкций, исследовать температурные поля, найти пустоты в изоляции, трещины в ограждающих конструкциях, Оценить воздухопроницаемость стыковых соединений.
Перспективными для применения являются также голографические методы, позволяющие получать при изменении условий рассмотрения одной и той же заснятой голограммы объемные изображения такими, какими они видны при различном положении точки наблюдения при непосредственном рассмотрении объекта.
Существуют и другие методы неразрушающего контроля. Наиболее эффективным является комплексное применение различных методов, базирующихся на разных физических принципах, взаимно дополняющих друг друга.
При всех своих достоинствах неразрушающие методы не всегда дают достаточно полную характеристику обследуемого объекта. С их помощью не всегда возможно установить все необходимые физико-механические свойства материала конструкции, а также показатели несущей способности, жесткости, трещиностойкости и др.