Гидротропизм.
Хемотропизм.
Ростовая двигательная реакция на градиент химических соединений называется хемотропизмом. Он обнаружен у корней, пыльцевых трубок, железистых волосков росянки и у других объектов. Клетками рецептируются градиенты различных химических веществ. Это могут быть кислоты и щелочи (раздражающими стимулами служат ионы Н+ и ОН- ), трофические факторы (минеральные соли и органические вещества), гормоны, аттрактанты и другие регуляторные соединения. Растения реагируют ростовыми движениями в направлении градиента (положительный хемотропизм) или от него (отрицательный хемотропизм). При этом для реакции существенны как химическая природа раздражителя, так и его концентрация: при низкой концентрации реакция может быть положительной, но превышение некоторой оптимальной концентрации приводит к отрицательной хемотропической реакции. У корней хемотропическая чувствительность локализована в их кончике. Затем раздражение передается к зоне растяжения, где наблюдается ростовая реакция.
Частным случаем хемотропизма является аэротропизм,который выражается в изменении направления роста корней, обусловленном односторонним действием какого-либо газа. Корни высших растений, как правило, обладают резко выраженным положительным тропизмом по отношению к кислороду и довольно ясно выраженным отрицательным тропизмом – к аммиаку, углекислому газу, парам хлороформа и некоторым другим газам.
Явления гидротропизма могут рассматриваться как частный случай хемотропизма; они вызываются неравномерным распределение воды в почве. Корни подавляющего большинства высших растений положительно гидротропны. В этом легко убедиться на основании опыта, описанного еще Саксом.
Семена какого-либо бобового растения проращиваются в опилках в ящике с цинковым дном с отверстиями. Ящик укреплен под углом 45О к горизонтальной линии. В соответствии с действием силы тяжести корни проростков растут прямо вниз и , достигая дна ящика, проникают через имеющиеся в нем отверстия. Если влажность воздуха за пределами ящика достаточно высокая, то корни продолжают свой рост в первоначальном направлении. В противном случае они делают крутой изгиб и прижимаются ко дну ящика, нередко вновь проникая внутрь последнего.
Несмотря на разнообразие отмеченных способов движения, необходимо еще раз подчеркнуть, что для растительного мира в целом наиболее характерно движение за счет роста растяжением. Особенность этого способа движения состоит не только в том, что он осуществляется за счет осмотических сил, но и в том, что он необратим. Поэтому рост растяжением у растений является одновременно и элементом морфогенеза.
У высших растений продольный рост растяжением обеспечивает увеличение длины стеблей и корней, а изодиаметрический рост клеток растяжением становится основой развертывания листовых пластинок и увеличения площади листовой поверхности. Другие формы движений также включают в себя рост растяжением. Например, круговые нутации и тропизмы приобретают свойства обратимого движения за счет чередования растяжения клеток в разных участках осевого органа. Ч. Дарвин полагал, что способность к круговым движениям у вьющихся и лазящих растений и тропизмы генетически связаны с круговыми нутациями.
У растений наблюдается прогрессивная эволюция способов движения от необратимого удлинения за счет роста растяжением к обратимым ростовым движениям (круговые нутации, тропизмы), затем к тургорным движениям (настии), которые уже не связаны с ростом растяжением, и, наконец, к быстрым тургорным движениям (сейсмонастии), где скорость передачи гормонального сигнала недостаточна и для
управления двигательной активностью используется электрический импульс (потенциал действия). Причем у растений эволюционно продвинутых талонов сохраняются в различных комбинациях и все ранее возникшие формы движения.
Двигательная активность растений необходима им для оптимизации питания, для процессов размножения, а в ряде случаев – и для защиты.