Возможности использования акустических каналов утечки информации.

 

В акустическом канале утечки носителем информации от источника к несанкционированному получателю является акустическая волна в атмосфере, воде и твердой среде. Источниками ее могут быть:

- говорящий человек, речь которого подслушивается в реальном масштабе времени или озвучивается звуковоспроизводящим устройством;

- механические узлы механизмов и машин, которые при работе издают акустические волны.

Структура этого канала утечки информации принципиально не отличается от структуры рассмотренных каналов утечки информации и приведена на рис 4.6.

Рис. 4.6. Структура акустического канала утечки информации.

Источниками акустического сигнала могут быть люди, звучащие механические, электрические или электронные устройства, приборы и средства, воспроизводящие ранее записанные звуки. Источники сигналов характеризуются диапазоном частот, мощностью излучения в Вт, интенсивностью излучения в Вт/м2 - мощностью акустической волны, прошедшей через перпендикулярную поверхность площадью 1 м2 , громкостью звука в дБ, измеряемой как десятичный логарифм отношения интенсивности звука к интенсивности звука порога слышимости. Порог слышимости соответствует мощности звука 10-12 Вт или звуковому давлению на барабанную перепонку уха человека 2.10 - 5 Па. Уровни громкости различных звуков иллюстрируются данными табл. 4.6.

Таблица 4.6

Оценка громкости звука на слух Уровень звука, дБ Источник звука
Очень тихий Усредненный порог чувствительности уха Тихий шепот (1.5 м)
Тихий Тиканье настенных механических часов Шаги по мягкому ковру (3-4 м) Тихий разговор, шум в читальном зале
Умеренный   Шум в жилом помещении, легковой автомобиль (10-15 м) Улица средней шумности
Громкий Спокойный разговор (1 м), зал большого магазина Радиоприемник громко (2 м), крик
Очень громкий Шумная улица, гудок автомобиля Симфонический оркестр, автомобильная сирена
Оглушительный Пневномолот, очень шумный цех Гром над головой Звук воспринимается как боль

Среда распространения носителя информации от источника к приемнику может быть однородной (воздух, вода) и неоднородной, образованной последовательными участками различных физических сред: воздуха, древесины дверей, стекол окон, бетона или кирпича стен, различными породами земной поверхности и т. д. Но и в однородной среде ее параметры не постоянные, а могут существенно отличаться в разных точках пространства.

Акустические волны как носители информации характеризуются следующими показателями и свойствами:

- скоростью распространения носителя;

- величиной (коэффициентом) затухания или поглощения;

- условиями распространения акустической волны (коэффициентом отражения от границ различных сред, дифракцией).

Теоретически скорость звука определяется формулой Лапласа:

Сзв= ,

где К‑модуль всесторонней упругости (когда сжатие производится без притока и отдачи тепла) вещества среды распространения;

r‑плотность вещества среды распространения.

Для газов модуль всесторонней упругости равен их давлению. При сжатии газа увеличение давления сопровождается пропорциональным увеличением его плотности. Поэтому скорость звука в газе не зависит от его плотности, а пропорциональна корню квадратному из температуры газа, значению универсальной газовой постоянной, отношению величин теплоемкостей газа при постоянном объеме и давлении.

Скорость звука в морской воде зависит от трех основных параметров: температуры t, солености s и давления, которое определяется глубиной h. Для определения скорости звука в морской воде используется формула Лероя, которая имеет вид:

v =1492.2+3(t ‑10)- 6х10-3(t ‑10)2 - 4 х10-2 (t ‑18)2+1.2(s ‑35) - 102 (t ‑18)(s ‑35)+h/61,

где v выражено в м/c, t ‑ в градусах Цельсия, s ‑ в промилях, h ‑ в метрах.

Скорость распространения звука в твердых телах определяется в основном их плотностью и упругостью.

Значение скорости распространения звука в некоторых типичных средах приведены в табл. 4.7.

Таблица 4.7.

Среда распространения Скорость, м/с
Воздух при температуре:  
0о С
+20о С
Вода морская 1440-1540
Железо
Стекло 3500-5300
Дерево 4000-5000
Горные породы 5000-8000

 

При распространении звуковых колебаний движение частиц среды вызывает давление во фронте волны. Фронтом звуковой волны называется поверхность, соединяющей точки поля с одинаковой фазой колебания. По мере распространения в любой среде звуковые волны затухают. Затухание звуковых волн в морской воде больше, чем в дистиллированной и меньше (почти в 1000 раз), чем в воздухе. При этом величина затухания зависит от длины акустической волны. С увеличением частоты величина затухания быстро возрастает, поэтому при постоянной мощности излучения дальность распространения с ростом частоты падает.

При распространении акустической волны в среде ее траектория изменяется в результате отражений и дифракции. На границе сред с разной плотностью акустическая волна частично переходит из одной среды в другую, частично отражается от границы между двумя средами. Доля проникшего или отраженного звука зависит от соотношения значений акустических сопротивлений сред, равных произведению удельной плотности вещества b на скорость звука в нем v. Коэффициент проникновения звука (в иную среду при существенном различии акустических сопротивлений сред оценивается по приближенной формуле Рэлея: b»4сv1b1/ v2b2. В соответствии с ней при нормальном падении звука из воздуха на воду, бетон, дерево в эти среды проникает не более тысячной доли интенсивности звука. Отражение звука может происходить от поверхности раздела слоев воздуха и воды с разными значениями акустического сопротивления вследствие неодинаковой температуры и плотности. Этим объясняется значительные колебания (в 10 и более раз) дальности распространения звука в атмосфере. Заметное влияние на характер распространения акустической волны в атмосфере может оказать ветер. При определенных условиях неоднородности создают условия для образования акустических (звуковых) каналов, по которым акустическая волна может распространяться на значительно большие расстояния, как свет по оптическим светопроводам. Акустические каналы чаще всего образуются в воде морей и океанов на определенной глубине, на которой в результате влияния двух противоположных природных факторов (плотности воды и ее температуры) минимизируется скорость распространения акустической волны. Скорость распространения акустической волны в воде, с одной стороны, увеличивается с глубиной из-за повышения плотности воды, но, с другой стороны, уменьшается при понижении ее температуры в более глубоких слоях, особенно в летнее время. В результате этих двух противоположных факторов влияния на определенной глубине, зависящей от температуры над поверхностью воды и ее солености, образуются области с минимумом скорости распространения акустической волны. Акустическая волна, попадающая в эту область, распространяется внутри ее с соответствующим для параметров воды затуханием. При отклонении траектории распространения волна, преломляясь в неоднородностях области, возвращается в канал. В акустическом канале звуковая волна от подводных взрывов может распространяться на расстояние в сотни и тысячи км.

При каждом отражении часть энергии звука теряется вследствие поглощения. Отношение поглощенной энергии звука к падающей называется коэффициентом поглощения . Коэффициенты поглощения звука a некоторых материалов приведены в табл. 4.8.

Таблица 4.8.

Материалы a Материалы a
Оштукатуренная кирпичная стена 0.025 Линолеум 0.12
Бетонная стена 0.015 Ковер 0.20
Стекло 0.027 Паркет 0.06

 

За счет многократных переотражений акустической волны в замкнутой среде распространения возникает явление послезвучания - реверберация. Величина реверберации оценивается временем Tр после выключения источника звука, в течение которого энергия звука уменьшается на 60 дБ. Вследствие многократных переотражений на мембрану микрофона в помещении оказывают давление акустические волны, распространяющиеся разными путями от источника звука. Интерференция волн с разными фазами могут при достаточно большом времени реверберации приводить к ухудшению соотношения сигнал/помеха в точке приема и уменьшению разборчивости речи. Чем больше размеры помещения и меньше коэффициент поглощения ограждающих поверхностей, тем больше время реверберации. При большом времени реверберации помещение кажется гулким. Однако при очень малом Тр на микрофон воздействует, в основном, быстрозатухающая прямая волна, слышимость речи при удалении от источника резко уменьшается, тембр звуков речи за счет большего затухания в среде распространения высоких частот обедняется. Время реверберации менее 0.85 с незаметно для слуха. Для большинства помещений организаций их объемы и акустическая отделка время реверберации мало (0.2-0.6) с и его можно не учитывать при оценке разборчивости.

Для концертных залов, имеющих существенно большие размеры, время реверберации определяет их акустику. Установлено, что в малых помещениях объемом V до 350 м2 оптимальной является реверберация со временем до 1.06 сек. При увеличении объема помещения время реверберации пропорционально повышается и принимает для V=27000 м3 значение около 2 сек.

Время реверберации в помещении объемом V вычисляется по формуле Эйринга [76]:

Тр= - 0.07V/Slg(1-ach),

где S - суммарная площадь всех поверхностей помещения;

aср = - средний коэффициент звукопоглощения в помещении;

Sк и aк - площади и коэффициенты поглощения ограждающих поверхностей соответственно.

При распространении структурного звука в конструкциях зданий, особенно, в трубопроводах возникают реверберационные искажения, снижающие разборчивость речи на 15-20%.

Акустическая волна в отличие от электромагнитной в значительно большей степени поглощается и в среде распространения. Поэтому дальность акустического канала утечки информации, в особенности от такого маломощного источника как человек, мала и, как правило, не обеспечивает возможность ее съема за пределами территории предприятия. Речь человека при обычной громкости может быть непосредственно подслушана злоумышленником на удалении единиц и в редких случаях - десятков метров, что, естественно, крайне мало.

Ухудщение разборчивости речи при прохождении звука через различнык строительные конструкции люстрируются данными в табл. 4.9 [13].

Таблица 4.9.

Тип конструкции Ожидаемая разборчивость слогов, %
Кирпичная стена (1 кирпич) 25/0
Гипсолитовая стена 90/0
Деревянная стена 99/63
Пластиковая стена 99/55
Дверь обычная филенчатая 100/73
Дверь двойная 95/36
Окно с одним стеклом 3 мм 90/33
Окно с одним стеклом 6 мм 87/15
Оконный блок 2х3 мм 82/0
Вентиляционный канал 20 м 90/2
Оконный кондиционер 95/63
Бетонная стена 88/0
Перегородка внутренняя 96/80
Трубопровод (в соседнем помещении) 95/55
Трубопровод (через этаж) 87/36

 

Примечание: в числителе указаны значения разборчивости речи при малом уровне акустических шумов, в знаменателе - при сильном.

Акустические шумы и помехи вызываются многочисленными источниками - автомобильным транспортом, ветром, техническими средствами в помещениях, разговорами в помещениях и т. п. Уровни шумов изменяются в течение суток, дней недели, зависят от погодных условий. Ночью и в выходные дни помехи меньше. Средние значения акустических шумов на улице составляют 60-75 дБ в зависимости от интенсивности движения автомашин в районе расположения здания. Уровень шумов в помещениях по существующим нормам не должен превышать 50 дБ. В трубопроводах отопления помехи изменяются от 10-15 дБ в отсутствие воды и 15-20 дБ при ее наличии.

При утечке акустической информации через вентиляционные воздухопроводы они ослабевают из-за изменения их сечения, поглощений в изгибах. Затухание в прямых металлических воздуховодах составляет 0.15 дБ/м, в неметаллических - 0.2-0.3 дБ/м. При изгибах затухание достигает 3-7 дБ (на один изгиб), при изменениях сечения - 1-3 дБ. Ослабление сигнала на выходе из воздуховода помещения составляет 10-16 дБ.

Поиски путей повышения дальности добывания речевой информации привели к появлению составных каналов утечки информации. Применяются два вида составного канала утечки информации: акусто-радиоэлектронной и акусто-оптический.

Акусто-радиоэлектронный канал утечки информации состоит из двух последовательно сопряженных каналов: акустического и радиоэлектронного каналов утечки информации. Приемником акустического канала является функциональный или случайно образованный акустоэлектрический преобразователь. Электрический сигнал с его выхода поступает на вход радиоэлектронного канала утечки информации - источника электрических или радиосигналов.

Структура акусто-радиоэлектронного канала утечки информации приведена на рис. 4.7.

Рис. 4.7. Структура акусто-радиоэлектронного канала утечки информации.

Пара “акустоэлектрический преобразователь-источник сигнала” образуют источник опасных сигналов или реализуются в закладном устройстве, размещаемом злоумышленником в помещении с конфиденциальной информацией. Закладные устройства создаются специально для подслушивания речевой информации и обеспечивают повышения дальности составного акустического канала до единиц км и возможность съема информации злоумышленником за пределами контролируемой зоны.

Закладное устройство как ретранслятор является более надежным элементом канала утечки, чем источник опасного сигнала, так как процесс образования канала утечки информации на основе закладки управляем злоумышленником.

Другой способ повышения дальности акустического канала утечки информации реализуется путем создания составного акусто-оптического канала утечки информации. Схема его указана на рис. 4.8.

Рим. 4.8. Структурная схема акусто-оптического канала утечки информации,

Составной акусто-оптический канал утечки информации образуется путем съема информации с плоской поверхности, колеблющейся под действием акустической волны с информацией, лазерным лучем в ИК-диапазоне. В качестве такой поверхности используется внешнее стекло закрытого окна в помещении, в которой циркулирует секретная (конфиденциальная) информация. Теоретически рассматривается возможность съема информации с внешней стороны стены помещения, но данных о реализации подобной идеи нет.

С целью образования оптического канала стекло облучается лазерным лучем с внешней стороны, например, из окна противоположного дома. Луч лазера в ИК-диапазоне для посторонних лиц и находящихся в помещении невидим. В месте соприкосновения лазерного луча со стеклом происходит акустооптическое преобразование, т. е. модуляция лазерного луча акустическими сигналами от разговаривающихся в помещении людей.

Модулированный лазерный луч принимается оптическим приемником аппаратуры лазерного подслушивания, преобразуется в электрический сигнал, усиливается, фильтруется, демодулируется и подается в головные телефоны для прослушивания оператором или в аудимагнитофон для консервации.


41. Каналы утечки информации на предприятиях атомной промышленности. Задачи ра­диационной разведки, ее особенности. Возможности технических средств радиационной разведки.

 

Работа предприятий и энергетических установок атомной промышленности характеризуетсяналичием радиоактивных отходов, которые загрязняют окружающую среду и создают, радиоактивные излучения, а следовательно несут информацию о профиле предприятия и выпускаемой им продукции. Подобные проявления могут рассматриваться как демаскирующие признаки предприятий атомной промышленности.

Наличие Не, являющегося индикатором источников радиоактивного излучения представляет важный демаскирующий признак, так как в отличие от радиоактивных газов, имеющих относительно небольшое время жизни (ТRn-3,823 дня, ТTn-54,5с, ТAn-3,92с), является устойчивым элементом иможет распространяться на значительные расстоянии от радиоактивного объекта.

Аномальные концентрации радиоактивных веществ в атмосфере, грунте и воде могут являться признаками нахождения поблизости объектов радиоактивного характера.

Таким образом, наличие радиоактивных отходов предприятий атомной промышленности и радиоактивных излучений сырья, готовой продукции, а также отходов производства могут раскрывать профиль предприятий, нести информацию о технологических процессах характеристиках изготавливаемой продукции, местах ее складирования, маршрутах транспортировки и т.д.

Источники радиоактивности могут быть обнаружены:

· по радиоактивным излучениям;

· по наличию радиоактивных и нерадиоактивных газов, образующихся в результате радиоактивного распада.

Для обнаружения радиоактивных элементов производятся заборы проб воздуха, грунта и воды в районе предполагаемого расположения радиоактивного объекта, а также непосредственные измерения радиоактивного излучения.

С целью лучшего представления физической основы возможной утечки информации о предприятиях атомной промышленности и их продукции рассмотрим некоторые свойства и характеристики радиоактивных излучений.