НЕКОТОРЫЕ АНАЛИТИЧЕСКИЕ ФУНКЦИИ ДОЖИТИЯ
Основные соотношения.Функция дожития и повозрастная смертность связаны соотношениями
V(t) = m(t) = –
Средняя продолжительность жизни
Ожидаемая продолжительность предстоящей жизни лиц в возрасте t:
Доля лиц в диапазоне возрастов [t1, t2] в общей численности (для стационарного населения)
w(t1, t2) =
В дальнейшем будет использовано обозначение
I(t1, t2) =
так что
= I(0, ∞); I(t,∞)/V(t); w(t1, t2) = I(t1, t2)/.
Модель нестареющего населения. Характеризуется постоянством повозрастной смертности:
m(t) = m = const, 0 £ t < ∞ .
Отсюда — функция дожития
V(t) = e– mt, 0 £ t < ∞ .
Средняя продолжительность жизни = 1/m. Ожидаемая продолжительность предстоящей жизни лиц в возрасте t: 1/m.
Доля лиц в диапазоне возрастов [t1, t2] в общей численности (для стационарного населения) w(t1, t2) =
Модель мгновенно стареющего населения. Характеризуется постоянством повозрастной смертности в пределах от 0 до максимального возраста T:
m(t) = m = const, 0 £ t < T.
Значению t = T соответствует отрицательная d-образная компонента, так что функция дожития обращается в 0 при t ³ T :
V(t) = e– mt, 0 £ t < T.
В этом случае
I(t1, t2) = ()/m.
Остальные характеристики:
=; [1 – e m(T – t)]/m ; w(t1, t2) = .
Степенная модель. Как и в предыдущем случае, возраст ограничен сверху предельным значением T; повозрастная смертность описывается выражением
m(t) =, 0 £ t < T, A > 0.
Теперь функция дожития имеет вид
V(t) = ,
а интеграл от нее —
I(t1, t2) =
так что
=; = ; w(t1, t2) =.
Удобство данной функции для различных упражнений состоит в том, что параметр A просто выражается через T и :
A = .
Гиперболическая модель. Здесь также возраст ограничен сверху предельным значением T; функция дожития
V(t) = , 0 £ t < T, k > 1.
Ей соответствует повозрастная смертность
m(t) =
и интеграл
I(t1, t2) = .
Остальные характеристики:
=;
.