ФАКТОРЫ ПРЕВРАЩЕНИЯ ОРГАНИЧЕСКОГО ВЕЩЕСТВА В НЕФТЬ
В качестве факторов, обеспечивающих превращение органического вещества в нефть, исследователи называют температуру, давление, катализаторы, микробиологическую деятельность, зараженность бассейна сероводородом, радиоактивность, электромагнитные колебания, тангенциальные давления, окисление. Многочисленность предполагаемых факторов объясняется отсутствием достаточно отчетливого представления о процессах нефтеобразования. Обычно тот
или иной фактор исследователи выдвигали в качестве решающего при нефтеобразовании на основании лабораторных экспериментов. При этом данному фактору приписывали исключительную роль, отрицали влияние других факторов и недоучитывали реальную природную обстановку. Иногда влияние того или иного фактора утверждали без каких-либо обоснований.
Нефть представляет собой глубоко восстановленный продукт превращения органического вещества. Поэтому почти все исследователи предусматривают наличие восстановительной среды для течения процесса нефтеобразования. И. Потапов, однако, считает возможным образование нефти за счет окисления метана. Образование нефтей в результате окислительных процессов признает также и В. А. Успенский. Если образование метана связывать с глубокими недрами земли, то «окислительная» гипотеза должна быть отнесена к разряду неорганических, и по отношению к ней применимо большинство возражений, изложенных выше. Если метан осадочного, т. е. органического, происхождения и образование нефтей идет за счет процессов окисления, то во времени нефти должны становиться все менее и менее метановыми. По этой схеме более древние нефти должны быть наименее метанизированы. В действительности, как уже отмечалось, наблюдается как раз обратное явление. В термодинамических условиях земной коры окисление метана считается невозможным. Наконец, в противоречии с этой гипотезой находятся и изотопные соотношения углерода в нефтях и газах.
Как отмечают С. Сильверман и С. Эпштейн, изотопный состав углерода в нефтях и их фракциях изменяется в очень узких пределах, в то время как природные газы, связанные с ними, значительно обогащены изотопом С12. Если колебания изотопного состава групп углеводородов в нефти составляют 1°/до; то в попутных газах они достигают 18°/до и более. На основании этого упомянутые авторы делают вывод о невозможности образования всей газовой фазы за счет превращения тяжелых углеводородов нефтей. Еще менее вероятным оказывается предположение об образовании нефтей из газовой фазы.
Еще Н. И. Андрусов, а затем А. Д. Архангельский и Н. М. Страхов обратили внимание на наличие сероводородного заражения в современных бассейнах (Черное море), в которых происходит накопление органического вещества в осадках в ясно выраженной восстановительной среде. Сероводороду довольно долго приписывали существенную роль в процессе преобразования органического вещества в нефть. Впоследствии более детальные исследования Н. М. Страхова показали, что это представление является одним из «увлекательных заблуждений». Сероводород следует рассматривать как индикатор среды, благоприятной для процессов нефтеобразования, как индикатор одной из геохимических фаций, в которой могли идти процессы превращения органического вещества в нефть.
Особенно частокак основной фактор процесса нефтеобразования выдвигается температура. Это вполне естественно, так как в лабораторной обстановке нефтепродукты наиболее легко получают воздействием высоких температур на различные органические вещества. М. В. Ломоносов, Г. Потонье, Д. Уайт и их последователи рассматривали высокотемпературную деструкцию органического вещества как единственный фактор нефтеобразования. Если бы породы, с которыми связаны процессы нефтеобразования, подвергались температурному воздействию в 300—500° С, то они несли бы на себе явные следы температурного метаморфизма. Все известные и изученные нефтеносные толщи, судя по их характеру и минералогическому составу, никогда не испытывали влияния такой высокой температуры.
Химический состав нефти также свидетельствует об определенных температурных пределах ее образования. Исследования температурных интервалов образования нефтей привели С. Н. ббрядчикова к выводу, что некоторые углеводороды, содержащиеся в нефтях, не могли возникнуть при температуре выше 300° С. Разобранные ранее соотношения между постоянными компонентами нефтей указывают на невозможность образования последних при высоких температурах. К такому выводу приходят по существу все химики, занимающиеся детальным исследованием химического состава нефтей (С. Н. Обрядчиков, А. Фрост, А. Ф. Добрянский, А. И. Богомолов и многие другие). "'
А. Фрост, опираясь на геохимические идеи Н. Д. Зелинского, экспериментальным путем показал возможность образования углеводородов из различных органических веществ при умеренно низких температурах (90—150° С).
В качестве катализаторов в своих последних работахА. Фростиспользовал сухие природные глины. Американский исследователь Брукс, продолжая работы А. Фроста с природными катализаторами, принял за нижний температурный предел образования нефтей температуру 65° С. Последние исследования в этом направлении А. И. Богомолова указывают на возможность таких превращений при катализенад глинами, не подвергшимися просушке.
Как показали исследования М. А. Мессиневой, каталитическая активность ферментов (продуктов жизнедеятельности бактерий) во много раз выше, чем глин. Высокая каталитическая активность ферментов определяется специфичностью их действия. Ферментативные процессы сопряжены с перераспределением химической энергии и не требуют или почти не требуют внешних источников энергии. Ферменты могут действовать при низких температурах. В отличие от бактерий каталитическая деятельность ферментов не ограничивается источниками питания, температурой, давлением, влажностью и т. д.
Участие бактерий в разложении органического вещества в осадке установлено исследованиями Н. Д. Зелинского, Е.'М. Брусиловского,
А. С. Вериго и др. Н. И. Андрусов, Г. П. Михайловский, Н. Г. Ушин-ский, Г. А. Надсон, В. О. Таусон, Б. Л. Исаченко и многие другие отводили бактериям большую роль в образовании нефти. Особенно много в этом направлении было сделано Т. Л. Гинзбург-Карагиче-вой в СССР, Э. Бастеном и К. Зобеллом за рубежом. Т. Л. Гинзбург-Карагичева экспериментальным путем установила образование нефте-подобных продуктов из жирных кислот под воздействием бактерий. К аналогичным выводам пришел К. Зобелл. Он подчеркивал способность бактерий синтезировать некоторые простейшие углеводороды. При погружении осадка вследствие потери им влаги, а в дальнейшем повышении температуры и влияния других ограничивающих факторов, деятельность бактерий замирает или во всяком случае не может быть решающей в превращении органического вещества в нефть.
После открытия радиоактивных явленийвесьма распространенными стали попытки применения их для объяснения самых различных процессов в природе, начиная от образования земли до превращения органического вещества в нефть. Впервые идея о влиянии радиоактивности на процесс образования нефти была высказана В. А. Соколовым в 1925 г. В качестве исходных продуктов для образования нефтяных углеводородов В. А. Соколов рассматривает органические вещества, которые преобразуются под действием радиоактивных излучений. Он приводит расчет, показывающий возможность образования за 1 млн. лет 180 тыс. т нефти из 1 км8 породы плотностью 2,0 г/см3, содержащей 1% органического вещества и обладающей суммарной радиоактивностью, равной по урану 0,001%. Произведя подсчет для месторождений Апшеронского полуострова, В. А. Соколов констатирует, что радиоактивным путем в продуктивной толще могло образоваться значительно менее 1% содержащейся в этих слоях нефти, i
В США И. Бергер и В. Уайтхэд отводят радиоактивным процессам очень большую роль в образовании нефти. Однако они несколько переоценивают значение радиоактивности. В самом деле, судя по их экспериментам, в заметных количествах образуется лишь метан, да и то только при разложении уксусной кислоты. В основном образуются такие газы, как Hg, COg и СО. Запасы этих газов, особенно инертного водорода, были бы в земной коре колоссальными, если бы образование известных скоплений нефти и горючих газов шло таким путем. Следовательно, если радиоактивность и оказывает влияние на процесс образования нефти,то она во всяком случае веявляетсярешающей.
Некоторые ученые, например В. П. Батурин, решающее значение в процессе нефтеобразования придают давлению. В. А. Сенюков и Н. И. Талдыкина (1967) экспериментальным путем доказали различие в процессах преобразования органического вещества, протекающих при низких и высоких (до 200 am) давлениях.
Для описания процессов, происходящих в нефти, до сих пор практически не привлекались вопросы кинетики и представления о цепных процессах. Между тем известно, что почти все превращения углеводородов (крекинг, окисление, полимеризация и т. п.), в особенности при низких температурах, являются цепными реакциями. С. П. Максимов, Н. А. Еременко, А. А. Жуховицкий и др. (1959) предложили в качестве одной из возможных схем следующую цепь реакций, согласующуюся с термодинамическими концепциями и отвечающую в основном экспериментальному материалу.
Первой стадией любого цепного процесса является зарождение цепи. Отщепление радикала (СНд или Н) от органической молекулы (М) может произойти v результате воздействия радиоактивного излучения:
мЛСНз "sh
В настоящее время хорошо изучены возможные последующие реакции, вызываемые свободными радикалами. Прежде всего возможно раскрытие циклов нафтеновых углеводородов:
Возможно также образование метанапо реакции
СНз+СНз—СНа—СНз —> СЩ+СНэ—СНг—СНг
В результате всех трех рассмотренных процессов возникает радикал углеводорода. Свободные радикалы обнаружены в нефти, каменном угле и сланцах (X. Жутовский, 1959; И. Дучесня и Дж. Дей иекс. 1961; Е. Роберте, 1961 и др.).
Таким образом, большинство рассмотренных факторов может оказать то или иное влияние на процессы образования нефти. Основная ошибка авторов большинства схем преобразования органического вещества в нефть заключается в том, что они приписывают исключительную роль какому-либо фактору. При этом явления отрывают от естественной природной обстановки, где все эти факторы действуют, взаимно переплетаясь. Каждому фактору в таких случаях приписывается активное энергетическое воздействие на исходное органическое вещество. В то же время до последних лет энергетическая сторона проблемы никогда серьезно не рассматривалась. А ведь представляется естественным, что органическое вещество само по себе обладает достаточно высоким запасом энергии для последующих преобразований. Процесс преобразования веществ с потерей энергии является обычным для земной коры. В этом случае все указанные выше факторы может быть следует рассматривать не как главные действующие силы, а лишь как определенные показатели среды преобразования подобно тому, как это было выявлено по отношению к сероводороду, или как факторы, лишь возбуждающие и стимулирующие течение того или иного процесса.
Первая серьезная попытка разрешения вопроса в этом направлении была предпринята А. Ф. Добрянским и П. Ф. Андреевым. Краткое изложение основных положений, выдвинутых А. Ф. Добрянсннм и П. Ф. Андреевым, приводится ниже. Термодинамика изучает энергию и ее превращения. Оперируя понятиями энтропии и свободной энергии, термодинамика может предсказать направленность процессов движения материи и энергии. При этом знание начального и конечного состояний вещества достаточно для суждений о возможностях происхождения того или иного процесса в заданных условиях. С энергетической точки зрения ассимиляция углекислоты организмами представляет собой процесс трансформации солнечной энергии. В живом организме идет накопление запаса свободной энергии высокого потенциала за счет поглощения солнечной радиации в результате построения сложных, способных ко множеству превращений энергетически насыщенных соединений: углеводов, белков и липоидов.
После смерти организма начинается самопроизвольный распад сложных соединений, термодинамически не устойчивых в условиях окружающей среды. Конечным результатом этого процесса в окислительной обстановке будут продукты полной минерализации: углекислота, вода, азот и другие соединения, обладающие наименьшими запасами свободной энергии. Запас энергии системы в целом уменьшается, энтропия увеличивается. В конечном счете вся запасенная солнечная энергия рассеивается. Общей тенденцией процессов превращения остатков организмов, захороненных в толще осадочных пород, является отделение от углерода гетерогенных элементов:
кислорода, азота, серы и водорода. Потеря свободной энергии системой идет таким образом, что все процессы, вызывающие наибольшее выделение энергии, протекают в начале, а менее — экзотермические — в конце.
На первых этапах превращения отделяются главным образом углекислота и вода как наиболее энергоемкие соединения. Вслед за этим отщепляются аммиак и сероводород. С исчезновением запасов легко отщепляемого кислорода и водорода в виде СОд, HgO, HgS, NHg наступает очередь удаления основной массы водорода в виде СН^. Прогрессирующая потеря водорода приводит к образованию в остатке углеродистых систем со структурой графита, обладающих нулевым
запасом свободной энергии. Таков путь превращений при образовании углей.
Захоронение в толще глинистых пород органических остатков в дисперсном состоянии создает возможность некоторого осложнения описанного процесса. Вследствие каталитических процессов на границе органическое вещество — минеральные зерна могут возникнуть явления распада исходной сложной молекулы с отщеплением более крупных обломков, чем молекулы газов. Относительно большая часть отщепившихся молекул получит возможность покинуть материнскую молекулу. Подвижные продукты, возникшие в результате процессов разрушения сложных молекул и потери энергии, могут в определенных случаях образовать скопления нефти.
Система сложных молекул захороненных остатков живых организмов имеет в себе достаточно высокий запас энергии для того, чтобы за счет внутренних ресурсов протекали все необходимые химические процессы, связанные с возникновением энергонасыщенных соединений — углеводородов. Однако реализация этой возможности, как отмечает П. Ф. Андреев и М. Ф. Двали, происходит лишь в определенных условиях — при наличии некоторых факторов. К числу последних обычно относят время, температуру, бактериальное действие, минеральные и органические катализаторы. Влияние этих внешних факторов в конечном счете сводится к мобилизации внутренних возможностей, к преобразованию захороненного органического вещества и превращению части его-в углеводороды и другие компоненты нефти.