Тектоника литосферных плит – современная геологическая теория

Вопрос №3. Геодинамические процессы. Геологические нарушения

 

Решающий вклад в современную геологическую теорию тектоники литосферных плит внесли следующие открытия: 1) установление грандиозной, около 60 тыс. км системы срединно-океанических хребтов и гигантских разломов, пересекающих эти хребты; 2) обнаружение и расшифровка линейных магнитных аномалий океанического дна, дающих возможность объяснить механизм и время его образования; 3) установление места и глубин гипоцентров (очагов) землетрясений и решение их фокальных механизмов, т.е. определение ориентировки напряжений в очагах; 4) развитие палеомагнитного метода, основанного на изучении древней намагниченности горных пород, что дало возможность установить перемещение континентов относительно магнитных полюсов Земли.

Литосферная плита — это крупный стабильный участок земной коры, часть литосферы. Согласно теории тектоники плит, литосферные плиты ограничены зонами сейсмической, вулканической и тектонической активности — границами плиты. Границы плит бывают трёх типов: дивергентные, конвергентные и трансформные.

В одной точке могут сходиться только три плиты. Конфигурация, в которой в одной точке сходятся четыре или более плит, неустойчива, и быстро разрушается со временем.

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра. С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Очертания плит меняются со временем. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций.

Более 90 % поверхности Земли покрыто 14-ю крупнейшими литосферными плитами.

 

 

Основная идея новой теории базировалась на признании разделения литосферы, т.е. верхней оболочки Земли, включающую земную кору и верхнюю мантию до астеносферы, на 7 самостоятельных крупных плит, не считая ряда мелких.

Эти плиты в своих центральных частях лишены сейсмичности, они тектонически стабильны, а вот по краям плит сейсмичность очень высокая, там постоянно происходят землетрясения. Следовательно, краевые зоны плит испытывают большие напряжения, т.к. перемещаются относительно друг друга.

 

 

Основные литосферные плиты (по В.Е.Хаину и М.Г.Ломизе): 1 – оси спрединга (дивергентные границы), 2 – зоны субдукции (конвергентные границы), 3 – трансформные разломы, 4 – векторы «абсолютных» движений литосферных плит. Малые плиты: Х – Хуан-де-Фука; Ко – Кокос; К – Карибская; А – Аравийская; Кт – Китайская; И – Индокитайская; О – Охотская; Ф – Филиппинская

Определив характер напряжений в очагах землетрясений на краях плит, удалось выяснить, что в одних случаях это растяжение, т.е. плиты расходятся и происходит это вдоль оси срединно-океанических хребтов, где развиты глубокие ущелья – рифты (англ. «рифт» – расщелина). Подобные границы, маркирующие зоны расхождения литосферных плит называются дивергентными (англ. дивергенс – расхождение).

 

 

 

Оболочное строение Земли

 

 

 

 

Современные сейсмичность, вулканизм и границы плит

 

 

Типы границ литосферных плит: 1 – дивергентные границы. Раскрытие океанских рифтов, вызывающих процесс спрединга: М – поверхность Мохоровичича, Л – литосфера; 2 – конвергентные границы. Субдуция (погружение) океанической коры под континентальную: тонкими стрелками показан механизм растяжения – сжатия в гипоцентрах землетрясений (звездочки); П – первичные магматические очаги; 3 – трансформные границы; 4 – коллизионные границы.

 

 

Дивергентные границы

 

 

 

Конвергентные (субдукционные) границы: взаимодействие океанской плиты с континентальной и взаимодействие океанских плит

 

 

 

Надвигание океанской плиты на континентальную – обдукция

 

 

 

Конвергентные границы (столкновение и взаимодействие континентальных плит)

 

 

 

Трансформные границы

 

 

 

Расположение осевых частей срединно-океанских хребтов. Являются основными дивергентными границами

 

 

 

 

Границы плит, направления и скорости перемещения плит, центры современной сейсмической и вулканической активности

 

 

Кинематика литосферных плит

 

На других границах плит в очагах землетрясений, наоборот, выявлена обстановка тектонического сжатия, т.е. в этих местах литосферные плиты движутся навстречу друг другу со скоростью, достигающей 10-12 см/год. Такие границы получили название конвергентных (англ. конвергенс – схождение), а их протяженность также близка к 60 тыс. км.

Существует еще один тип границ литосферных плит, где они смещаются горизонтально относительно друг друга, как бы сдвигаются, о чем говорит и обстановка скалывания в очагах землетрясений в этих зонах. Они получили название трансформных разломов (англ. трансформ – преобразовывать), т.к. передают, преобразуют движения от одной зоны к другой.

Некоторые литосферные плиты сложены как океанической, так и континентальной корой одновременно. Например, Южно-Американская единая плита состоит из океанической коры западной части южной Атлантики и из континентальной коры Южно-Американского континента. Только одна, Тихоокеанская плита целиком состоит из коры океанического типа.

Современными геодезическими методами, включая космическую геодезию, высокоточные лазерные измерения и другими способами установлены скорости движения литосферных плит и доказано, что океанические плиты движутся быстрее тех, в структуру которых входит континент, причём, чем толще континентальная литосфера, тем скорость движения плиты ниже.

Общепринятой точкой зрения перемещения литосферных плит считается признание конвективного переноса вещества мантии. Поверхностным выражением такого явления являются рифтовые зоны срединно-океанических хребтов, где относительно более нагретая мантия поднимается к поверхности, подвергается плавлению и магма изливается в виде базальтовых лав в рифтовой зоне и застывает.

 

Происхождение полосовых магнитных аномалий в океанах. А и В – время нормальной, Б – время обратной намагниченности пород: 1 – океаническая кора, 2 – верхняя мантия, 3 – рифтовая долина по оси срединно-океанического хребта, 4 – магма, 5 – полоса нормально и 6 – обратно намагниченных пород

Далее в эти застывшие породы вновь внедряется базальтовая магма и раздвигает в обе стороны более древние базальты. И так происходит много раз. При этом океаническое дно как бы наращивается, разрастается. Подобный процесс получил название спрединга (англ. спрединг – развертывание, расстилание). Таким образом, спрединг имеет скорость, измеряемую по обе стороны осевого рифта срединно-океанического хребта.

Скорость разрастания океанического дна колеблется от нескольких мм до 18 см в год. Строго симметрично по обе стороны срединно-океанических хребтов во всех океанах расположены линейные магнитные положительные и отрицательные аномалии. Везде мы видим одну и туже последовательность аномалий, в каждом месте они узнаются, всем им присвоен свой порядковый номер.

Иными словами, по обе стороны срединно-океанического хребта мы имеем две одинаковые «записи» изменения магнитного поля на протяжении длительного времени. Нижний предел этой «записи» – 180 млн. лет. Древнее океанической коры не существует. Подобный процесс и есть спрединг.

Таким образом и происходит наращивание океанической литосферы по обе стороны хребта, по мере удаления от которого она становится холоднее и тяжелее и постепенно опускается, продавливая астеносферу.

Край плиты, под которую субдуцирует океаническая, подрезает осадки, скопившиеся на ней, как нож скрепера или бульдозера, деформирует эти отложения и приращивает их к континентальной плите в виде аккреционного клина (англ. аккрешион – приращение). Вместе с тем какая-то часть осадочных отложений, погружается вместе с плитой в глубины мантии.

В различных местах этот процесс идёт разными путями. Так, у побережья Центральной Америки, где пробурены скважины, почти все осадки пододвигаются под континентальный край, чему способствует сверхвысокое давление воды, содержащейся в порах осадков. Поэтому и трение очень мало. В ряде других мест погружающаяся океаническая литосферная плита разрушает, эродирует край континентальной литосферы и увлекает за собой вглубь её фрагменты.

Также следует упомянуть о столкновении или коллизии двух континентальных плит, которые в силу относительной легкости слагающего их материала, не могут погрузиться друг под друга, а сталкиваются, образуя горно-складчатый пояс с очень сложным внутренним строением. Так, например, возникли Гималайские горы, когда 50 млн. лет назад Индостанская плита столкнулась с Азиатской.

Так сформировался Альпийский горно-складчатый пояс при коллизии Африкано-Аравийской и Евразийской континентальных плит.

 

Относительные движения литосферных плит и распределение скоростей спрединга в рифтовых зонах СОХ ( см/год): 1 – дивергентные и трансформные границы плит; 2 – планетарные пояса сжатия; 3 – конвергентные границы плит

Рассчитанные абсолютные и относительные движения литосферных плит с момента начала распада Пангеи, т.е. со 180 млн. лет назад, хорошо известны и отличаются большой точностью.

Воссоздана картина раскрытия Атлантического и Индийского океанов, которое продолжается и в наши дни со скоростью около 2,0 см в год. Выяснена возможность некоторого проворачивания литосферы Земли по отношению к нижней мантии в западном направлении, что позволяет объяснить, почему на западной и восточной активных окраинах Тихого океана условия субдукции неодинаковы и возникает известная асимметрия Тихого океана с задуговыми, окраинными морями и цепями островов на западе и отсутствием таковых на востоке.

Теория тектоники литосферных плит впервые в истории геологии носит глобальный характер, т.к. она касается всех районов земного шара и позволяет объяснить их историю развития, геологическое и тектоническое строение.

Заключительная часть занятия (5 минут)

 

Преподаватель доводит задание на самоподготовку и подводит итоги занятия. Отмечает студентов, наиболее активно работавших на занятии. Отвечает на задаваемые вопросы. Подается команда к завершению занятия.

 

Заведующий кафедрой ГДиВБ Л. В. Пихконен