Метаморфизм
Метаморфизм — преобразование горных пород под действием эндогенных процессов, вызывающих изменение физико-химических условий в земной коре. Преобразованию могут подвергаться любые горные породы — осадочные, магматические и ранее образовавшиеся метаморфические. В физико-химических условиях, отличных от тех, в которых образовались горные породы, происходит изменение их минерального состава, структуры и текстуры. Изменение минерального состава при метаморфизме может протекать изохимически, т.е. без изменения химического состава метаморфизуемой породы, и метасоматически, т. е. со значительным изменением химического состава метаморфизуемой породы за счет привноса и выноса вещества. Изменение структуры и текстуры пород обычно происходит в процессе перекристаллизации вещества. Особенность метаморфических процессов заключается в том, что они протекают с сохранением твердого состояния системы, без существенного расплавления пород. Лишь при определенных физико-химических условиях метаморфизм сопровождается частичной или полной кристаллизацией исходных пород. Процессы подобного характера объединяются под названием ультраметаморфизма.
В зависимости от интенсивности метаморфических процессов наблюдается постепенный переход от слабо измененных пород, сохраняющих состав и структуру исходных разностей, до глубоко преобразованных пород, первичная природа которых практически утрачена.
Метаморфизм представляет собой сложное физико-химическое явление, обусловленное комплексным воздействием температуры, давления и химически активных веществ. Он протекает без существенного изменения химического состава первичных пород. Различают следующие виды метаморфизма.
Выделяют изохимический метаморфизм — при котором химический состав породы меняется несущественно, и не изохимический метаморфизм (метасоматоз) для которого характерно заметное изменение химического состава породы, в результате переноса компонентов флюидом.
Основные факторы метаморфизма
Основными факторами метаморфизма являются температура, давление и флюид.
Температура - важнейший фактор метаморфизма, влияющий на процессы кристаллообразования и определяющий состав минеральных ассоциаций. Метаморфические преобразование горных пород происходит в температурном интервале 250 -1100°C. Именно на этом рубеже, в связи с резким возрастанием скоростей химических реакций, проводится граница междудиагенезом и метаморфизмом.
Флюидом называются летучие компоненты метаморфических систем. Это в первую очередь вода и углекислый газ. Реже роль могут играть кислород, водород, углеводороды, соединения галогенов и некоторые другие. В присутствии флюида область устойчивости многих фаз (особенно содержащих эти летучие компоненты) изменяются. В их присутствии плавление горных пород начинается при значительно более низких температурах.
Метасоматоз
Химически активные вещества — третий и, вероятно, самый главный фактор метаморфизма, который приводит к изменению химического состава пород. К ним, прежде всего, относятся вода и углекислота; в последнее время не меньшее значение придается водороду — газу, обладающему высокими теплопроводностью и диффузионной способностью. Существенную роль играют также соединения N, Cl, F, B, S и других элементов. В виде растворов сложного состава эти вещества мигрируют через горные породы, оказывая на них метаморфизующее воздействие. Согласно господствующей точке зрения, обоснованной Д. С. Коржинским, А. А. Маракушевым и др., метаморфизующие растворы имеют глубинное (подкоровое) происхождение. Вода, содержащаяся в осадочных породах и освобождающаяся в процессе их высокотемпературного преобразования, не имеет большого значения и обычно не сказывается на общем характере метаморфизма. Основным фактором, по-видимому, являются восходящие горячие растворы, которые диффундируют из недр сквозь мельчайшие пустоты пород и через магматические расплавы, и, обогащаясь минерализаторами, становятся активными агентами метаморфизма. Об огромной роли этих растворов можно судить по тому факту, что в так называемых сухих системах, т. е. в породах, лишенных растворов вследствие малого объема их пустотного пространства, даже при наличии высоких давлений и температур метаморфические преобразования практически не происходят или идут крайне медленно.
39. Метаморфизм – это процесс преобразования горных пород под воздействием эндогенных факторов при сохранении твердого состояния. Типы метаморфизма
По масштабу проявления выделяют региональный и локальный типы.По проявлению отдельных факторов выделяют:
1. Изохимический (когда в результате образования новых минералов не изменяется валовый химический состав пород) и аллохимический или метасоматический (когда происходит привнос одних элементов и вынос других, т.е. изменяется валовый химический состав вновь образованных пород).
2. Динамометаморфизм – (синоним катакластический или дислокационный) происходит в условиях преобладания фактора направленного давления (стресса).
3. Термальный – (или контактово-термальный) происходит как правило за счет тепла остывающего магматического расплава на контакте интрузивных тел с вмещающими их породами. При этом наблюдается температурная зональность – вблизи контакта с интрузивным телом образуются высокотемпературные минеральные ассоциации, а по мере удаления от контакта они сменяются низкотемпературными минералами. Такой тип метаморфизма наблюдается вблизи интрузий ультраосновного и основного составов, температура которых достигает 1200о. Такие магмы практически не сопровождаются выделением химически активных веществ, поэтому метаморфизм пород – изохимический.
Магмы среднего и кислого составов при остывании выделяют флюиды или газово-жидкие химически активные вещества в нагретом состоянии. При таком воздействии на горные породы происходит метасоматоз – это процесс метаморфизма горных пород, при котором решающим фактором является привнос и вынос химических компонентов. Следствием этого является изменение химического и минерального состава конечных продуктов процесса. Рассмотрим эти процессы на примере внедрения гранитной магмы в осадочную толщу, которая представлена слоями песчаников, алевролитов и известняков (плакат). Из приведенного примера видно, что кроме основных факторов метасоматоза, важное значение имеет состав исходной породы, который влияет на состав вновь образованной породы.
Рассмотренные нами типы метаморфизма, как правило, охватывают небольшие участки линейной или линзовидной формы. Поэтому их рассматривают как результат локального метаморфизма.
4. Региональный метаморфизм – происходит в крупных блоках земной коры с участием всех основных факторов (т.е. температуры, давления и химически активных веществ). Температурный диапазон от 300о до 10000, диапазон изменения давления от 2–5 тыс.атм. до 25000 атм.
Метаморфические породы, образовавшиеся по магматическим горным породам называют ортопородами (ортогнейсы, ортосланцы и т. п.), а по осадочным — парапородами (парасланцы, парагнейсы и т. д.).
В зависимости от термодинамических условий протекания метаморфизма метаморфизуемых пород выделяют фации метаморфизма, т. е. группы пород, минеральные ассоциации которых соответствуют определенным термодинамическим условиям (температуре — Т, общему давлению — Робщ, парциальному давлению воды РН2О). Для наглядности фации метаморфизма изображаются графически (в координатах Р–Т), с выделением полей устойчивости тех или иных минеральных ассоциаций. Существует сложная классификация фаций метаморфизма. Ниже приводится наиболее распространенная схема фаций регионального метаморфизма.
В зависимости от термодинамических условий протекания метаморфизма метаморфизуемых пород выделяют фации метаморфизма, т. е. группы пород, минеральные ассоциации которых соответствуют определенным термодинамическим условиям (температуре — Т, общему давлению — Р, парциальному давлению воды РН2О). Для наглядности фации метаморфизма изображаются графически (в координатах Р–Т), с выделением полей устойчивости тех или иных минеральных ассоциаций. Существует сложная классификация фаций метаморфизма. Ниже приводится наиболее распространенная схема фаций регионального метаморфизма.
1. Фация «зеленых» сланцев. Температура не выше 250°, давление до 0,3 килобара. Характерны кислые плагиоклазы (альбит), биотит, хлорит, мелкочешуйчатый мусковит (серицит) и др. Данная фация обычно накладывается на осадочные породы.
2. Эпидот-амфиболитовая фация. Температура обычно 250–400°С, давление до 1 килобара. Устойчивы эпидот, амфиболы (главным образом актинолит), олигоклаз, мусковит, биотит и др. Данная фация тоже чаще всего накладывается на осадочные породы.
3. Амфиболитовая фация накладывается на любые типы пород — магматические, осадочные, метаморфические (т.е. уже подверженные метаморфизму зеленосланцевой или эпидот-амфиболитовой фации). Температура метаморфического процесса здесь оценивается в 100–700°С, давление — до 3 килобар. Характерные минералы: роговая обманка, плагиоклаз (андезин), гранат (альмандин), диопсид и др.
4. Гранулитовая фация. Температура 700–1100°С, давление — до 5 килобар. Кристаллизуются минералы, не содержащие гидроксила (ОН): гиперстен, энстатит, а также лабрадор, магнезиальный гранат (пироп) и др.
5. Эклогитовая фация образуется при очень высоких температурах (до 1500°С и более) и высоких давлениях (до 20–30 килобар и более). Устойчивы гранат (пироп), основной плагиоклаз, зеленый пироксен (омфацит).
Вопрос № 40Тектонические гипотезы по-разному объясняют развитие самой верхней твердой оболочки Земли. Гипотезы отличаются, прежде всего, объектами исследований и приоритетом направления тектонических движений.
Гипотеза фиксизма (платформ и геосинклиналей)объясняет развитие земной коры, и главное значение отводит вертикальным движениям ее блоков. Свои истоки фиксизм берет в гипотезе контракции земной коры. Согласно последней, остывающая планета уменьшается в объеме, что ведет к складчатым деформациям ее верхней твердой части. Согласно фиксизму, главнейшими структурами земной коры являются платформы (материковые и океанические) и геосинклинальныепояса. Под платформой понимается жесткий устойчивый блок земной коры, не претерпевающий активных тектонических движений (вулканизм и землетрясения редки). Платформы или их участки могут подвергаться лишь медленному воздыманию или погружению. Геосинклинальюназывается подвижный участок земной коры, испытывающий быстрые вертикальные перемещения. В пределах геосинклинали земная кора сильно расчленена разломами и отличается повышенной проницаемостью. Геосинклиналям характерны следующие черты.
1. Вертикальная направленность тектонических движений, резкая смена прогибания поднятием.
2. Большие мощности осадочных пород (до 10 – 15 км).
3. Широкое развитие интрузивного и эффузивного магматизма, высокая сейсмичность.
4. Активный метаморфизм горных пород.
5. Интенсивная складчатость всей территории и обилие разломных структур.
Геосинклинали возникают благодаря расколу земной коры и провалу ее блоков в мантию с их последующей переплавкой. На месте провалившегося блока формируется тонкий, а значит подвижный базальтовый слой, то есть образуется земная кора океанического типа. Возникший таким образом морской геосинклинальный бассейн в своем развитии проходит через несколько стадий.
1. Собственно геосинклинальная стадия – идет погружение тонкой и тяжелой океанической коры. Благодаря углублению моря, на дне его накапливаются все более мощные толщи осадочных пород. Базальтовый слой не выдерживает растяжения и разрывается, что ведет к формированию подводных лавовых покровов.
2. Островная стадия – усложняются тектонические движения: на фоне преобладающего погружения отдельные массивы дна испытывают подъем. Активизируются процессы вулканизма и интрузивного магматизма. Вершины вулканических гор поднимаются над водой, формируя островные дуги.
3. Орогенная стадия – дно геосинклинального бассейна, разбитое трещинами на блоки, испытывает активные вертикальные и горизонтальные подвижки, что приводит к общему смятию в складки накопленных осадочных толщ. По линиям разломов происходит активный магматизм и формирование огромных интрузивных тел. Под влиянием давления при складкообразовании, а также под воздействием тепла, газов и растворов интрузий слои осадочных пород подвергаются сильной метаморфизации. Господствует режим тектонического воздымания территории, в результате которого на месте моря возникает горно-складчатая суша.
4. Постгеосинклинальная (платформенная) стадия – на территории горно-складчатой суши постепенно затухают быстрые тектонические движения, главенствующее значение приобретают процессы эрозии и денудации. Сохранившиеся от разрушения «корни» гор причленяются к платформе, наращивая ее площадь. Такой процесс роста континентальной земной коры получил название аккреции.
Гипотеза тектоники литосферных плитзародилась в конце девятнадцатого века как гипотеза дрейфа материков (мобилизма). Гипотеза тектоники литосферных плит объясняет развитие литосферы, и главное значение отводит горизонтальным движениям ее блоков. Согласно этой гипотезе, главными структурами литосферы являются литосферные плиты и разделяющие их рифты.Литосферные плиты, включающие в свой состав участки земной коры как океанического, так и континентального типов, находятся в постоянном горизонтальном движении относительно друг друга. Различие в абсолютной высоте между материковыми и океаническими участками плит объясняется изостазией – явлением уравновешивания мощных, но легких блоков (континентального типа), блоками тонкими, но тяжелыми (океанического типа). Рифты – рассекающие всю литосферу глубинные разломы, в которых происходит раздвиг (растяжение, спрединг) литосферных плит и наблюдается высочайшая сейсмическая активность, а мощность земной коры минимальна (до 0 м).
Основные положения концепции сводятся к тому, что магма, поднимающаяся по рифтовым разломам, изливается на поверхность и застывает, образуя напластования базальтов, представленные в рельефе срединно-океаническими хребтами. Образующиеся при застывании магмы кристаллы ферромагнитных минералов ориентируются в соответствии с направлением линий напряженности магнитного поля Земли. Затем новообразованная океаническая кора разламывается и раздвигается со скоростью до нескольких сантиметров в год в обе стороны от рифта, тем самым увеличивая площадь океана. Этот процесс получил название спрединга. В соответствии с инверсиями магнитного поля Земли, в разрастающейся океанической коре возникают поддающиеся возрастной датировке парные полосы магнитных аномалий, симметрично обрамляющие срединно-океанический хребет. По линиям трансформных разломов происходит сдвиг как срединных хребтов и рифтов, так и полосовых магнитных аномалий. В зоне конвергенции литосферных плит, одна из которых содержит кору материкового типа, а другая – океанического, происходит процесс субдукции. Субдукция заключается в том, что тонкая, но тяжелая плита с океанической корой полого погружается в мантию под гораздо более мощную, но легкую плиту с материковой корой. В том месте, где происходит перегиб океанической плиты, возникает глубоководный желоб. В зоне взаимодействия плит, но ближе к материку, формируется островная дуга, созданная смятыми в складки, метаморфизированными и пронизанными интрузиями слоями морских отложений и, частично, вулканическими породами. Таким образом, благодаря конвергенции происходит, с одной стороны, поглощение океанических участков литосферы, а с другой стороны, приращение континентальных участков. Факты, свидетельствующие в пользу концепции спрединга, можно разделить на три группы.
1. Особенности строения срединно-океанических хребтов:
– сложены базальтоидами с примесью ультраосновных пород;
– они молоды, поскольку почти лишены осадков;
– положительные аномалии силы тяжести, свидетельствующие о близком залегании тяжелых масс;
– высокие значения теплового потока, свидетельствующие о близости раскаленных масс;
– наблюдаются многочисленные мелкофокусные землетрясения, свидетельствующие о малой мощности литосферы.
2. Особенности строения океанического дна:
– наличие полосовых магнитных аномалий, попарно разного знака полярности;
– отсутствие осадочных пород, древнее юрских;
– вулканические конусы и подводные горы вытянуты в линии, в целом параллельные срединно-океаническому хребту;
– увеличение возраста вулканических конусов от срединно-океанического хребта к материкам;
– увеличение возраста и мощности осадочных пород в этом же направлении;
– рост глубины океана с удалением от срединно-океанического хребта;
– снижение величины теплового потока в этом же направлении;
3. Особенности строения зон субдукции:
– вулканизм островных дуг;
– промежуточные и глубокофокусные землетрясения, сосредоточенные в наклонных зонах;
– отрицательные аномалии силы тяжести;
– пониженный тепловой поток.
Вопрос№41 Тектонические структуры — закономерно повторяющиеся формы залегания горных пород. Тектонические структуры образуются в результате внутренних процессов, происходящих влитосфере: тектонических движений, прорывов магмы и т.п.
Различают:
- простейшие тектонические структуры: складки, трещины, сбросы, лакколиты и др.
- глубинные тектонические структуры, достигающие верхних слоев мантии Земли: литосферные плиты, платформы, складчатые пояса, островные дуги, глубинные разломы и др.
Платформы — обширнейшие участки земной коры, с устойчивым малоподвижным фундаментом, который сложен магматическими и метаморфическими породами и перекрыт чехлом осадочных пород. Древними платформами считаются те, которые имеют докембрийский фундамент, у молодых платформ фундамент сформировался позже.
Щиты — участки древних платформ, где кристаллический фундамент выходит на поверхность.
Плиты — участки платформ, где фундамент погружен под толщей осадочных пород в несколько сот метров и глубже.
Складчатые области и пояса — протяженные горные районы, в которых породы сильно смяты в складки, нарушены разрывами.
Строение земной коры, расположение крупных тектонических структур показывает тектоническая карта, которую можно найти в географических атласах.
Крупнейшие тектонические структуры по их значимости можно расположить в следующем порядке.
§ Суперглобальные структуры – имеют площадь в десятки миллионов квадратных километров и протяженность в тысячи километров. Развитие их проходит на протяжении всего геологического этапа истории планеты.
§ Глобальные структуры – занимают площади до десяти и более миллионов квадратных километров, протягиваются на несколько тысяч километров. Время их жизни совпадает с предыдущими структурами.
§ Субглобальные структуры – охватывают несколько миллионов километров квадратных, длина их достигает тысячи километров и более. Время развития превышает один миллиард лет.
Помимо названных, выделяются также структуры более мелких порядков.
В первую очередь, на основании единства движения, а также сравнительной монолитности, необходимо выделить такие суперглобальные структуры, каклитосферные плиты. Принято выделять семь крупнейших плит и от одиннадцати до тринадцати более мелких. Крупнейшими плитами являются Евразийская, Африканская, Северо-Американская, Южно-Американская, Индо-Австралийская, Антарктическая, Тихоокеанская. В числе мелких плит можно назвать Филиппинскую, Аравийскую, Кокос, Наска, Карибскую и др. Во-вторых, важнейшими являются разломные структуры,разделяющие собою литосферные плиты.
Среди разломных структур, в первую очередь, выделяются рифты, которые подразделяются на срединно-океанические и континентальные. Срединно-океанические рифты образуют собою глобальную систему, протяженностью более 64 000 км. В качестве примеров континентальных рифтов можно привести величайший на планете Восточно-Африканский, а также Байкальский. Другой разновидностью разломных структур являются трансформные разломы, перпендикулярно рассекающие рифты. По линиям трансформных разломов происходит горизонтальное проскальзывание (сдвиг) прилегающих к ним частей литосферных плит.
В пределах участков литосферных плит с материковым строением земной коры, выделяются такие глобальные структуры, как платформы и горно-складчатые области.
Платформы – это жесткие, малоподвижные блоки земной коры, прошедшие длительный этап геологического развития, и имеющие трех ярусное строение. Платформы состоят из кристаллического фундамента (базальтовый и гранито-гнейсовый слои) и осадочного чехла. Кристаллический фундамент сложен смятыми в складки слоями метаморфических пород. Вся эта сложно дислоцированная толща во многих местах прорвана интрузиями (преимущественно кислого и среднего состава). По возрасту формирования кристаллического фундамента платформы подразделяются на древние (докембрийские) и молодые (палеозойские и, реже, раннемезозойские). Древние платформы являются ядрами всех материков и занимают их центральную часть. Молодые платформы размещаются на периферии древних или между древними платформами. В составе осадочного чехла господствуют недислоцированные слои шельфовых, лагунных, реже континентальных осадков.
В пределах древних платформ, по особенностям геологического строениявыделяют такие субглобальные структуры, как щиты и плиты. Щит – участок платформы, где кристаллический фундамент выходит на поверхность (т.е. где нет осадочного слоя). Щиты возникают при тектоническом воздымании территории, в результате которого господствуют процессы денудации. В рельефе щиты обычно представлены плоскогорьями (Бразильский щит), а реже возвышенностями (Донецкий щит). Плиты – это платформы (или их участки) с мощным осадочным слоем. Образование плит связано с тектоническим погружением платформы, и, соответственно, с морской трансгрессией. На поверхности платформ плитным территориям чаще всего соответствуют низменности, а также возвышенности.
Более мелкие структурные подразделения в пределах осадочного чехла древних платформ представлены суперрегиональными структурами, площадь которых составляет сотни тысяч квадратных километров, а протяженность – до нескольких сот километров. Их развитие происходит во время накопления осадочного чехла и измеряется сотнями миллионов лет. Суперрегиональные структуры подразделяются на региональные, а последние, в свою очередь, на структуры еще более мелких порядков. Среди суперрегиональных структур необходимо назвать антеклизы, синеклизы и моноклинали.
Антеклизы – крупнейшие положительные структуры плитных участков с выпуклой формой поверхности фундамента и осадочным чехлом небольшой мощности. Антеклизы формируются в режиме тектонического воздымания территории, поэтому на них могут отсутствовать многие горизонты, представленные на соседних отрицательных структурах. В пределах антеклиз можно выделить такие региональные структуры, как массивы и выступы.
Массивы являются высшими частями антеклиз, в которых фундамент либо выходит на поверхность, либо перекрывается осадочными породами четвертичного возраста. Выступы – это части массивов, антеклиз, представляющие собой изометричные или вытянутые поднятия фундамента диаметром до 100 км. Иногда выделяют погребенные выступы, над которыми осадочный чехол хотя и имеется, но представлен сильно сокращенным разрезом (по сравнению с окружающими отрицательными структурами). Синеклизы – крупнейшие отрицательные суперрегиональные структуры плитных участков с вогнутой поверхностью фундамента, плоским дном и очень пологими (доли градуса) углами падения слоев на склонах. Синеклизы возникают в режиме тектонического погружения территории, в силу чего характеризуются повышенной мощностью осадочного чехла. Региональными структурами, подобными синеклизам, являются имеющие изометричную форму впадины и линейно вытянутые прогибы.Моноклинали – тектонические структуры с односторонним наклоном слоев, угол падения которых редко превышает 1°. В зависимости от ранга положительных и отрицательных структур, между которыми располагается моноклиналь, ее ранг также может быть разным. Среди региональных структур осадочного чехла необходимо упомянуть горсты, грабены (см. «Дизъюнктивные дислокации») и седловины. Седловины – региональные образования, занимающие промежуточное положение по относительной высоте своей поверхности. Седловины лежат выше окружающих их отрицательных структур, но ниже окружающих положительных.
Горно-складчатые области, характеризующиеся резким возрастанием мощности земной коры, формируются при конвергенции литосферных плит. Большинству горно-складчатых областей, особенно молодых, характерна повышенная сейсмичность.
Основополагающим принципом их разделения является возраст складчатости, устанавливаемый по возрасту самых молодых смятых в складки слоев. Соответственно, горные массивы подразделяются на байкальские, каледонские, герцинские, киммерийские и альпийские. Такое разделение является достаточно условным, поскольку большинством ученых признается непрерывность складкообразования во времени. Другими словами, в истории Земли не было обще планетарных этапов тектонической активности и покоя. Горообразование происходит непрерывно, проявляясь то в одном, то в другом месте. Следовательно, выделение байкальской и других складчатостей определяет лишь временные рамки начала и завершения крупных исторических этапов тектонического развития планеты.
По тектоническому строению ныне существующие горно-складчатые области можно разделить на структуры складчатые и складчато-глыбовые.
Складчатые массивы представлены в молодых (альпийского и, отчасти, киммерийского этапов складкообразования) горно-складчатых поясах.
Складчато-глыбовые (омоложенные, возрожденные) сооружения формируются при оживлении вертикальных и горизонтальных тектонических подвижек в пределах ранее образованных и, часто, уже разрушенных складчатых систем. Поэтому складчато-глыбовое строение особенно характерно регионам палеозойских и более древних этапов складчатости. Рельеф складчатых массивов в целом соответствует конфигурации изгибов слоев горных пород, что далеко не всегда проявляется в складчато-глыбовых образованиях. Так, в молодых складчатых горах структурам антиклинальных складок (или антиклинориев) соответствуют горные хребты, а структурам синклинальных складок (или синклинориев) – межгорные долины (прогибы).
Внутри горно-складчатых областей и на их периферии выделяются соответственно межгорные и предгорные (краевые, передовые) прогибы и впадины. На поверхности этих структур залегают грубообломочные продукты разрушения гор – молассы. Образованиепредгорных прогибов происходит в результате субдукции литосферных плит, то есть, по сути, предгорные прогибы являются реликтами глубоководных желобов.
Вопрос№42 методы определения возраста горных пород.