Наиболее распространенными веществами в географической оболочке являются горные породы и минералы, природные воды, лед, воздух, живое вещество, почва и кора выветривания.

Границы географической оболочки. Большинство ученых считает, что верхняя граница географической оболочки соответствует уровню наибольшей концентрации озонового слоя, расположенного на высоте 25—28 км. Другие исследователи, отождествляющие географическую оболочку с ландшафтной, проводят ее внешнюю границу по верхней границе тропосферы, учитывая, что тропосфера активно взаимодействует с земной поверхностью.

Нижнюю границу часто проводят по разделу Мохоровичича, т.е. по подошве земной коры. Некоторые исследователи считают, что в географическую оболочку следует включать лишь часть земной коры, непосредственно взаимодействующую с другими компонентами — водой, воздухом, живыми организмами.

Считается, что оптимальными границами географической оболочки являются верхняя граница озонового слоя и подошва земной коры, в пределах которых находятся основная часть атмосферы, вся гидросфера и верхний слой литосферы с живущими или жившими в них организмами и следами человеческой деятельности.

Основополагающим является понятие «система» — совокупность элементов, находящихся в определенном отношении. Все то, с чем данная система взаимодействует, называют средой. Географические системы взаимодействуют между собой территориально и функционально.

Механические системы характеризуются силовым взаимодействием образующих их тел, имеющих массу. К ним относятся космические тела, воздушные и морские течения и др. Механическую систему рассматривают как систему равновесия сил. В случае его отсутствия система направленно изменяется и вскоре разрушается.

Термодинамические системы связаны с движением вещества, обусловленным преобразованием или переносом энергии. В отличие от изолированных систем, исследуемых классической термодинамикой, геосистемы относятся к числу открытых, т. е. обменивающихся веществом и энергией с внешней средой.

Термодинамическими системами являются различные термические циркуляции вещества, если с ними связаны переходы или потоки энергии. Например, круговорот воды в природе. При изучении термодинамических систем широко используется метод балансов (радиационный и тепловой баланс).

Биокосными называют системы, в которых неразрывно связаны и взаимодействуют живое и неживое вещества. Примером биокосной системы является почва, представляющая собой единство минерального вещества (порода, вода, воздух), живых организмов и мертвого биоорганического вещества (гумус и др.).

Система имеет связи, которые подразделяют на прямые (причинно-следственные, вещественно-энергетические) и обратные (информационно-регулирующие). Систему с обратными связями называют саморегулируемой. Обратные связи бывают отрицательными и положительными. Отрицательная связь уменьшает интенсивность процесса в системе при увеличении ее «выхода». Она характерна для нормально функционирующих систем и направлена на поддержание их динамического равновесия, устойчивости, неизменности. Положительная связь усиливает процесс по мере увеличения «выхода» системы, т. е. приводит к лавинообразному нарастанию процесса, в результате чего система переходит в новое состояние или разрушается.

Состояние системы описывается параметрами, среди которых выделяют интенсивные и экстенсивные. Интенсивные параметры (температура, абсолютная и относительная влажность, биопродуктивность) не зависят от размеров системы, экстенсивные (запасы тепла, влагосодержание в воздушной массе, запасы органического вещества и др.) определяются величиной системы (температура есть и в Арктике, и на экваторе, но в Арктике она ниже, а на экваторе выше).Устойчивым называют равновесие, которое самопроизвольно восстанавливается, если систему из него вывести. Систему в устойчивом состоянии можно уподобить шарику, находящемуся в ямке (рис. 4.1, а). Метаустойчивым называют состояние, являющееся одним из вариантов устойчивого (рис. 4.1, б): шар мог бы занять любое из трех понижений (1, 2, 3), но из них абсолютно устойчиво только положение 2. Неустойчивым называют состояние, когда малый импульс воздействия выводит систему из равновесия, в которое она не может возвратиться (рис. 4.1, в). Неустойчивость характерна для развивающихся систем. Она увеличивает разнообразие природы (создаются новые системы), но может иметь и отрицательное экологическое значение. Системы в неустойчивом состоянии подвержены флуктуациям — хаотическим колебаниям параметров, эффект которых непредсказуем.

В большинстве случаев системы географической оболочки являются открытыми. Открытые системы не стремятся к минимуму потенциальной энергии и максимуму энтропии (мера рассеяния энергии).

Гравитационное поле Земли представляет собой поле силы тяжести — равнодействующей силы тяготения и центробежной силы вращения Земли (рис. 4.2). Так как сила тяготения зависит от радиуса Земли, который наименьший на полюсах, то она наибольшая на полюсах. Центробежная сила, зависящая (при одинаковой скорости вращения) от радиуса орбиты, наибольшая на экваторе. Результирующая этих сил возрастает от экватора к полюсам соответственно от 978 до 983 галов. Сила тяжести убывает от земной поверхности вверх и несколько возрастает в глубь Земли в пределах литосферы.процесс гравитационной дифференциации вещества — расслоение в соответствии с плотностью вещества в поле силы тяжести. В результате такого расслоения возникли геосферы, каждая из которых сложена веществом одного агрегатного состояния и сходной плотности.

Движения земных масс. Взаимодействия гравитационных и иных сил внутри планеты и влияние космического окружения приводят к движению земных масс, старающихся занять наиболее устойчивое положение в пространстве. Непосредственным выражением этих смещений являются вулканические процессы — выбросы в географическую оболочку глубинных масс вещества, сейсмические явления — резкие смещения внутриземных масс, сопровождаемые обычно подземными толчками и разрывами сплошности земной коры, тектонические движения — перемещения земных масс внутри планеты или проявляющихся на земной поверхности (неотектонические).

Приливы. Океанские приливы зависят главным образом от взаимодействия Земли, Луны и Солнца. Ведущую роль при этом играет близкорасположенная Луна, притяжение которой в 2,17 раза превосходит солнечное. Весь приливоотливной цикл по продолжительности соответствует лунным суткам (24 ч 51 мин), которые не совпадают с солнечными, за счет чего образуются приливные неравенства. Однако в действительности наблюдаются суточные, полусуточные и смешанные приливы.

Механические движения, связанные с вращением Земли. Основу этих движений составляет одна из сил инерции — сила Кориолиса, обусловленная вращением Земли вокруг своей оси. Она равна произведению массы точки т на ее поворотное ускорение аки направлена противоположно этому ускорению:

где FK— сила Кориолиса; т — масса движущегося тела; vотнотносительная скорость движения точки; ω — угловая скорость вращения Земли; φ — географическая широта.