Испытания

Свойства

Твердотельные лазеры

Перспективы

Применение

Испытания

Первое испытание рентгеновского лазера, получившее название «тест Кабра», было проведено в 1983 г. В подземной шахте была взорвана водородная бомба, а затем беспорядочный поток рентгеновского излучения от нее был сфокусирован и превращен в когерентный рентгеновский лазерный пучок.

Первоначально испытания были признаны успешными; фактически именно этот успех в 1983 г. вдохновил президента Рейгана на историческое заявление о намерении построить оборонительный щит из «Звездных войн».

Так была запущена многомиллиардная программа строительства сети устройств, подобных рентгеновским лазерам с ядерной накачкой, для сбивания вражеских межконтинентальных баллистических ракет. Работы по этой программе продолжаются и сегодня.

Известно, что лазерное рентгеновское устройство с накачкой от маломощного ядерного взрыва отрабатывалось при проведении подземных испытаний ядерного оружия.

Рентгеновские лазеры имеют громадное значение, как военное, так и научное. Очень маленькая длина волны рентгеновского излучения позволяет использовать такие лазеры для зондирования на атомных расстояниях и дешифровки атомной структуры сложных молекул, что чрезвычайно сложно делать обычными методами. Возможность «видеть» атомы в движении и различать их расположение внутри молекулы заставляет совершенно по-новому взглянуть на химические реакции.

 

Можно ли на самом деле сбивать боеголовки баллистических ракет при помощи такого нетривиального устройства? Не исключено. Но не следует забывать, что неприятель может придумать множество простых и недорогих способов нейтрализации подобного оружия.

Поэтому рентгеновские лазеры с ядерной накачкой на данный момент не в состоянии защитить от ракетного нападения. Но можно ли создать на их основе Звезду смерти, способную уничтожить целую планету или стать действенным средством защиты от приближающегося астероида?

Первый лазер на кристалле рубина длиной 1 сантиметр был построен в 1960 году Т. Мэйманом (США).

Твердотельный лазер работает на искусственно выращенных кристаллах рубина, алюмоиттриевого граната и на стекле с примесью редкого элемента неодима. Стеклянный или кристаллический стержень вместе с импульсной лампой накачки окружен отражателем и помещен внутрь резонатора — между парой зеркал. Энергия световой вспышки превращается в лазерный импульс. Режим генерации, соответственно, может быть непрерывным или импульсным, и еще есть режим так называемого гигантского импульса Q-switch.

 

Длина волны излучения твердотельного лазера - 1 мкм.

Твердотельные лазеры имеют большую расходимость луча.

Плохо обрабатывают неметаллические материалы, так как некоторые виды таких материалов являются либо полностью, либо частично прозрачными для лазерного излучения.

Твердотельные лазеры неметаллические материалы режут значительно хуже газовых, однако имеют преимущество при резке металлов - по той причине, что волна длиной 1 мкм отражается хуже, чем волна длиной 10 мкм. Медь и алюминий для волны длиной 10 мкм - почти идеально отражающая среда. Но, с другой стороны, сделать CО2-лазер проще и дешевле, чем твердотельный.

Впервые ТТЛ на алюмоиттриевом гранате с неодимом, накачиваемый лазерным диодом на основе арсенида галлия, был создан Россом в 1968г. Мощность этого лазера была крайне незначительна, а для согласования спектральной линии накачки с полосой поглощения Nd: YAG лазерный диод термостатировался при температуре 170 К. Более весомые результаты были достигнуты в 70-х годах с появлением лазерных диодов на гетеропереходах. Полученная в работе российских ученых средняя мощность генерации ТТЛ с диодной накачкой на уровне 1 Вт на тот момент была рекордной.