Плутониевая бомба

Урановая бомба

Принцип действия

В основу ядерного оружия положена неуправляемая цепная реакция деления ядра. Существуют две основные схемы: «пушечная», иначе называемая баллистической, и имплозивная.

«Пушечная» схема характерна для самых примитивных моделей ядерного оружия I-го поколения, а также артиллерийских и стрелковых ядерных боеприпасов, имеющих ограничения по калибру оружия. Суть её заключается в «выстреливании» навстречу друг другу двух блоков делящегося вещества докритической массы. Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет более высокий нейтронный фон, что приводит к увеличению требующейся скорости соединения частей заряда, превышающий технически достижимые.

«Имплозивная» схема подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом обычной химической взрывчатки, которой для фокусировки придаётся весьма сложная форма и подрыв производится одновременно в нескольких точках с прецизионной точностью.

Мощность ядерного заряда, работающего исключительно на принципах деления тяжёлых элементов,ограничивается сотнями килотонн. Создать более мощный заряд, основанный только на делении ядер, возможно, но крайне затруднительно. Самый мощный в мире боеприпас, основанный только на делении ядер, был испытан в США 15 ноября 1952 года, мощность взрыва составила 500 кт[1].

Для того, чтобы реакция могла поддерживать сама себя, необходимо соответствующее «топливо», в качестве которого на первых этапах использовался изотоп урана.

Уран в природе встречается в виде двух изотопов — уран-235 и уран-238. При поглощении ураном-235 нейтрона в процессе распада выделяется от одного до трёх нейтронов:

Уран-238, напротив, при поглощении нейтронов умеренных энергий не выделяет новые, препятствуя ядерной реакции. Он превращается в уран-239, затем в нептуний-239, и наконец, в относительно стабильный плутоний-239.

Для обеспечения работоспособности ядерной бомбы содержание урана-235 в ядерном топливе должно быть не ниже 80 %, иначе уран-238 быстро погасит цепную ядерную реакцию. Природный же уран почти весь (около 99,3 %) состоит из урана-238. Поэтому при производстве ядерного топлива применяют сложный и многоступенчатый процесс обогащения урана, в результате которого доля урана-235 повышается.

Бомба на основе урана стала первым ядерным оружием, использованным человеком в боевых условиях (бомба «Малыш», сброшенная на Хиросиму). Из-за ряда недостатков (трудности получения, разработки и доставки) на данный момент не распространены, уступая более совершенным бомбам на основе других радиоактивных элементов с более низкой критической массой.

Первым ядерным зарядом, взорванным в испытательных целях, было ядерное устройство «Gadget», «Штуковина» (англ. gadget — приспособление, безделушка) — прототип плутониевой бомбы «Толстяк», сброшенной на Нагасаки. Испытания проводились на полигоне неподалеку от г. Аламогордо в штате Нью-Мексико.

Конструктивно эта бомба представляла собой несколько сфер, вложенных друг в друга:

  1. Импульсный нейтронный инициатор (ИНИ, «ёжик», «урчин» (англ. urchin)) — шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 — первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время короткоживущий полоний-210 заменён долгоживущим плутонием-238, также способным при смешении с бериллием к мощному нейтронному импульсу.
  2. Плутоний. Желателен максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.
  3. Оболочка (англ. tamper), служащая отражателем нейтронов (из урана).
  4. Обжимающая оболочка (англ. pusher) из алюминия. Обеспечивает бо́льшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.
  5. Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из «быстрой» и «медленной» взрывчаток — боратола и ТАТВ.
  6. Корпус, изготовленный из дюралевых штампованных элементов — две сферических крышки и пояс, соединяемых болтами.

 

Боевой железнодорожный ракетный комплекс БЖРК 15П961 «Молодец» c межконтинентальной ядерной ракетой

Ракета РТ-23 УТТХ и ракетный комплекс в целом разработаны в <КБ> Южное в Днепропетровске, генеральный конструктор академик В.Ф.Уткин. Поезд и пусковая установка разработаны в КБСМ, Ленинград, главный конструктор академик А.Ф. Уткин. В 1987-1991 гг. построено 12 комплексов.

В состав БЖРК входят:

1.Три минимальных пусковых модуля

2.Командный модуль в составе 7 вагонов

3. Вагон-цистерна с запасами горюче-смазочных материалов

4.Три тепловоза ДМ62

Минимальный пусковой модуль включает в себя три вагона:

1. Пункт управления пусковой установкой 2.

2. Пусковая установка

3. 3. Агрегат обеспечения

Дальность стрельбы 10100 км
Длина ракеты 23,0 м
Длина пускового контейнера 21 м
Максимальный диаметр корпуса ракеты 2,4 м
Стартовый вес ракеты 104.80 т
Масса ракеты с пусковым контейнером 126 т

Пусковая установка Вагон построен на Калининском заводе в 1986 г.

Длина 23,6 м
Ширина 3,2 м
Высота 5,0 м
Масса около 200 т

 

Головная часть ракеты разделяющегося типа индивидуального наведения с десятью боевыми блоками мощностью 0.43 Мт и комплексом средств преодоления ПРО.

В 1963 году, когда только четыре государства имели ядерные арсеналы, правительство Соединенных Штатов делало прогноз, что в течение предстоящего десятилетия появится от 15 до 25 государств, обладающих ядерным оружием; другие же государства предсказывали, что это число может даже возрасти до 50. По состоянию на 2004 год известно, что только у восьми государств есть ядерные арсеналы. Сильный режим нераспространения — его олицетворяют МАГАТЭ и Договор — помог резко замедлить предполагавшиеся темпы распространения.

Из доклада ООН, 2005 год [1]