Амплитудно-модулированные (АМ) сигналы

Общая формула АМ сигнала имеет вид:

(3.1.2)

Величина m называется коэффициентом модуляции и показывает, какую часть от амплитуды напряжения несущей частоты Uom составляет приращение амплитуды модулированного напряжения ΔUm.

 

Временная диаграмма АМ сигнала приведена на рис.3.1.24.

Общая формула показывает, что спектр амплитудно-модулированного (АМ) телефонного сигнала состоит из суммы трех колебаний (см.также рис.3.1.24):

− несущей частоты f0;

− верхней боковой (ВБП);

− нижней боковой полосы (НБП).

Ширина спектра АМ сигнала составляет 2 Fмах(6,8 кГц), где Fмах – максимальная частота в спектре модулирующего НЧ сигнала (3,4 кГц). Ширина спектра АМ сигналов радиовещательных станций может составлять до 9-10 кГц.

 

Рис.3.1.24. АМ сигнал и его спектр

Спектр АМ сигнала не рационален в двух отношениях.

Во-первых, наличие мощного колебания несущей частоты, которое используется лишь при детектировании сигнала в приемнике. При коэффициенте модуляции 100% 2/3 мощности передатчика приходится на долю несущей частоты и 1/3 на долю двух боковых полос частот.

Во-вторых, боковые полосы частот АМ сигнала дублируют друг друга. Поэтому достаточно передать одну боковую полосу частот (верхнюю или нижнюю – ВБП или НБП), т.е. перейти на однополосную телефонную передачу.

Спектр однополосного сигнала (рис.3.1.25) занимает полосу частот, в два раза меньшую полосы частот обычного АМ сигнала. В спектре однополосного сигнала отсутствуют одна боковая полоса и несущая частота f0.

 

а б

Рис.3.1.25. Однополосные сигналы

 

На рис.3.1.25. показан спектр однополосного ТЛФ сигнала с ВБП с полностью подавленной несущей (а) и спектр однополосного сигнала с НБП с частично подавленной несущей при вторичном уплотнении канала связи двумя ТЛГ каналами (б)

Несущее колебание может быть частично (передача с пилот-сигналом) или полностью подавленным. Для приема таких сигналов применяются приемные устройства, в которых производится восстановление несущего колебания.

Однополосные передачи имеют ряд преимуществ:

а) Спектр частот для передачи одного телефонного канала в два раза меньше по сравнению со спектром частот с АМ. Это позволяет в приемном устройстве иметь узкую полосу пропускания, что повышает качество приема, в особенности при наличии радиопомех.

б) Увеличивается возможное количество каналов связи в одном и том же диапазоне частот.

в) При однополосной передаче получается значительный энергетический выигрыш:

− на передающем конце получается выигрыш, эквивалентный увеличению мощности передатчика в 4 раза;

− полоса пропускания приемника уменьшается в 2 раза, а это эквивалентно выигрышу по мощности в 2 раза;

− потребление энергии от источников питания однополосным передатчиком уменьшается в виду того, что в момент молчания излучения электромагнитной энергии нет; это дает выигрыш по мощности еще на 25%;

− на коротких волнах в пункте приема при обычной амплитудной модуляции нарушаются фазовые соотношения между несущей частотой и боковыми составляющими, это приводит к замираниям сигналов; при однополосных передачах эти замирания значительно уменьшаются, что дает выигрыш в мощности передатчика примерно в 2 раза.

Таким образом, для радиотелефонной однополосной работы получается выигрыш в мощности передатчика по сравнению с обычным АМ примерно в 10-20 раз.

Однополосную радиотелефонную связь труднее перехватывать и прослушивать.

Однополосная передача является помехозащищенной ввиду значительного выигрыша по мощности полезного сигнала.

АМ и однополосные сигналы применяются в основном в КВ диапазоне. Однополосные сигналы – основные сигналы применяемые в военных системах связи, в том числе с программной перестройкой рабочей частоты (ППРЧ).

Частотно-модулированный сигнал – представляет собой ВЧ сигнал, в спектре частот которого присутствуют несущая частота fo и множество боковых частот fo ± F; fo ± 2F; fo ± 3F и т.д. при воздействии на fo сигналом тональной частоты F.

Если при модуляции воздействует спектр звуковых частот, то спектр ЧМ колебания (рис.3.1.26) будет шире и весь промежуток будет заполнен комбинационными частотами. Максимальное приращение частоты радиосигнала (Δfm) относительно ее исходного значения называется девиацией частоты. Соотношение амплитуд в этом спектре зависит от индекса частотной модуляции М, который определяется по формуле:

 

Спектр ЧМ телефонного сигнала шире спектра амплитудно-модулированного сигнала, зависит от индекса модуляции (от величины управляющего модулирующего напряжения) и мало зависит от ширины полосы модулирующего сигнала.

2 Δfчм = 2(М+1)F или 2 Δfчм =2 Δfmax +2 Fmax

ЧМ сигналы в основном применяются в УКВ диапазоне. Временная диаграмма ЧМ сигнала также приведена на рис.3.1.26.

 

Рис.3.1.26. ЧМ сигнал и его спектр

 

Фазовую модуляцию можно рассматривать как разновидность частотной модуляции. При фазовой модуляции изменяется фаза высокочастотного колебания.

В качестве переносчика сообщений может использоваться периодическая последовательность радиоимпульсов, которая характеризуется амплитудой, длительностью, частотой следования импульсов, положением импульсов во времени относительно положения импульсов немодулированной последовательности, то есть фазой импульсов.

Изменяя один из перечисленных параметров, можно получить четыре основных вида импульсной модуляции: амплитудно-импульсную модуляцию (АИМ), частотно-импульсную модуляцию (ЧИМ), фазоимпульсную модуляцию (ФИМ), модуляцию импульсов по длительности (ДИМ). Импульсные виды модуляции широко используются в многоканальных радиорелейных и тропосферных линиях связи.

Рассмотренные виды передач в настоящее время являются простейшими, незащищенными от радиоперехвата с целью получения доступа к информации, а каналы связи имеют низкую пропускную способность и помехозащищенность.

В настоящее время ведущая роль принадлежит цифровым видам связи. В общем случае, любой сигнал может быть преобразован последовательность дискретных сигналов – электрических импульсов постоянного тока (цифровую форму), закодирован кодовыми комбинациями (зашифрован), сжат и передан по каналу связи. На приемном пункте производится обратное преобразование и восстановление сигнала, включая исправление обнаруженных ошибок.

Возможности возбудителя определяются его назначением. Количество видов формируемых сигналов существенно влияет на сложность устройств формирования сигналов.

Диапазон частот и шаг сетки. Диапазон частот определяется назначением возбудителя. Он должен охватывать диапазоны частот всех передатчиков, для которых предназначен возбудитель. В современных возбудителях обеспечивается дискретная установка частоты с определенным интервалом-шагом сетки. Шаг сетки обычно выбирается кратным 10 Гц: 10 Гц, 100 Гц. 1 кГц. Величина шага сетки соизмеряется с шириной спектра самого узкополосного сигнала, применяемого в возбудителе. Таким сигналом является сигнал при амплитудном телеграфировании (А-1). Ширина его спектра при скорости телеграфирования 15-20 Бод составляет примерно 45-60 Гц. Необходимо, чтобы сигналы двух передатчиков, работающих на соседних частотах, были без заметного влияния приняты приемниками своих корреспондентов. Поэтому для многих возбудителей достаточно иметь шаг сетки 100 Гц. Однако, если предполагается применение телеграфирования с очень малыми скоростями, может оказаться необходимой сетка частот с шагом 10 Гц.

Стабильность частоты. Требования по стабильности частотывозбудителя в основном определяются видом применяемых сигналов. Наиболее высокая стабильность частоты необходима при формировании однополосных сигналов, когда телефонный канал уплотняется много-канальной телеграфной иди другой аппаратурой. В этомслучае допускается расхождение несущих частот в радиолинии не более 10-12Гц. Следовательно, абсолютная нестабильность частоты возбудителя должна быть порядка 5-6 Гц. Стабильность частоты возбудителя определяется синтезатором и прежде всего – применяемым в нем опорным генератором.

Уровень побочных колебаний и шума.Учитывая, что усилительный тракт передатчика может быть широкополосным, к возбудителюпредъявляются очень жесткие требования по подавлению побочных колебаний и шума на выходе. Выходное колебание идеального возбудителя. должно содержать только один полезный компонент – сигнал. При отсутствии, модуляции - это гармоническое колебание, спектр которого состоит из одной спектральной линии. Спектр выходного колебания реального возбудителя включает в себя спектр полезного сигнала, множество узкополосных спектров побочных колебаний и сплошной спектр шумов.

Источниками шумов и побочных колебаний в возбудителе являются синтезаторы итракт формирования и преобразования частоты сигнала. Особенно опасны побочные колебания, образующиеся а последнем смесителе возбудителя, так как их подавление в выходных цепях возбудителя сопряжено с большими трудностями.

По существующим нормам подавление побочных колебаний шумов должно быть не менее 80 дБ в области частот, примыкающей к рабочей частоте возбудителя (при расстройке от +- 3,5 кГц до +- 25 кГц, при больших расстройках подавление должно возрастить до 100-140 дБ.

Время перестройки.В возбудителях, где применяется запоминание нескольких рабочих частот и автоматический переход с одной рабочей частоты на другую, достигается время перестройки в пределах 0,3-1 с. Время перестройки определяется прежде всего синтезатором и зависит от его типа и структуры, метода установки частоты и применяемой системы автоматического управления возбудителем.

 

Основные методы синтеза частот

 

В синтезаторах частот, применяемых в технике радиосвязи частота выходного колебания принимает множество дискретных значений с равномерным интервалом - шагом сетки.

В первых разработках для создания дискретного множества рабочих частот использовалось такое же множество кварцевых резонаторов, комму-тируемых в схеме автогенератора взависимости от требуемой рабочей частоты. Этот принцип кварцевой стабилизации в диапазоне частот получил название "кварц-волна ", так как для каждой рабочей частоты применялся свой кварцевый резонатор. Недостатки этого метода очевидны: требуется большое количество кварцевых резонаторов, а в этом случае невозможно обеспечить высокую стабильность частоты генерируемых колебаний.

В последующих разработках стремились yмeньшить число кварцевых резонаторов за счет преобразования частоты входных колебаний, построенные по так называемой интерполяционной схеме. Структурные схемы устройства, отображающие этот метод синтеза показаны на рис.3.1.27, 3.1.28.

 

 

Рис.3.1.27. Интерполяционные схемы кварцевых генераторов

 

 

Рис.3.1.28. Формирование сетки частот

 

Можно показать, что относительная нестабильность частоты выходного колебания в основном определяется относительной нестабильностью более высокочастотного генератора (Г1). Это значит, что требования к стабильности частоты менее высокочастотного генератора (Г2) могут быть менее жесткими, чем к генератору Г1.Поэтому при синтезе частот в схеме рис. 3.1.27. иногда в качестве генератора Г2 применяют обычный LC- генератор плавного диапазона (ГПД) (Рис.3.1.29).

 

 

Рис.3.1.29. Схема с генератором плавного диапазона

В этом случае обеспечивается непрерывное изменение частоты выходного колебания без существенного ухудшения стабильности частоты, достигнутой в генераторе Г1. Недостатком синтезатора, собранного по схеме рис. 3.1.27 – 3.1.29 , является достаточно большое число применяемых кварцевых резонаторов. При таком методе синтеза частот трудно обеспечить относительную нестабильность частоты выходного колебания меньше чем 10-5 – 10-6 . Если требуется более высокая стабильность частоты, то оказывается значительно проще и экономичнее применять в синтезаторе частот один высокостабильный опорный кварцевый автогенератор.

Практические схемы синтезаторов частот, разработанные до настоящего времени, весьма разнообразны, но пометоду образова­ния выходного колебания их можно разделить на две основные группы:синтезаторы, выполненные на основе метода прямого синтеза и синтезаторы, выполненные на основе метода косвенного синтеза. Синтезатор частоты считается выполненным на основе метода прямого синтеза, еслион не содержит автогенераторов иего выходные колебания получаются в результате суммирования, умножения и деления частоты входных колебаний, поступающих от эталонного генератора, или датчиков опорных частот. Другое название этого метода - пассивный синтез частот.

При косвенном синтезе выходное колебание синтезатора создает автогенератор, нестабильность частоты которого устраняется. С этой целью частота генератора с помощью системы (тракта) приведения преобразуется к частоте некоторого эталона, сравнивается с этим эталоном, и полученная ошибка используется для устранения нестабильности генератора. В схемах автоподстройкой частоты этот генератор называется управляемым, а в схемах с компенсацией нестабильности частоты - вспомогательным. Другое название метода косвенного синтеза - активный синтез.

В синтезаторах косвенного синтеза приведение частоты генератора к эталону может осуществляться путем ряда преобразований частоты, где с помощью колебаний от датчиков опорных частот производится последовательное уменьшение (вычитание) частоты. Такой тракт приведения называют трактом вычитания частоты.

Приведение частоты генератора к эталону может производиться и путем деления частоты, причем в настоящее время в качестве делителей частоты применяются делители типа счетчиков импульсов построенные на базе цифровых интегральных схем. Поэтому синтеза­торы с трактом деления частоты принято называть цифровыми.

Простейшая схема синтезатора, собранного по методу прямого синтеза показан на рис. 3.1.30. Синтезаторсодержит несколько датчиков опорных частот, каждый из которых дает на своем выходе колебание одной из десяти частот. Колебания от датчиков поступают на смеситель, на выходе смесителя с помощью полосового фильтра выделяется комбинационное колебание суммарной частоты.

 

 

Рис.3.1.30. Синтезатор по методу прямого синтеза

 

Структурная схема синтезатора, выполненного на основе метода косвенного синтеза и содержащего тракт вычитания, показана на рис.3.1 31. Выходное колебание синтезатора создает ГПД. В тракте приведения частоты ГПД к эталону частота ГПД понижается. В фазовом детекторе (ФД) происходит сравнение преобразованной частоты ГПД и частоты эталонного колебания.

 

Рис.3.1.31. Синтезатор по методу косвенного синтеза

 

Синтезатор, выполненный по методу косвенного синтеза, позволяет получить меньший уровень побочных излучений, так как проще реализуется их фильтрация.

Любой синтезатор содержит датчикопорных частот. Датчик по своему назначению тоже является синтезатором, только функции его ограничены формированием всего десяти частот. Датчики строятся, так же как и синтезатор в целом, на основе методов прямого или косвенного синтеза. Чаще применяются наиболее простые схемы прямого синтеза, напримep, умножители частоты. Иногда датчики формируют 100 иболее опорных частот, тогда их устройство усложняется идля построения применяются оба метода синтеза частот.

В синтезаторах, построенных по методу косвеннoгo синтеза для автоматической перестройки ГПД применяется так называемое устройство поиска, которое изменяет частоту ГПД до попадания ее в полосу захватывания системы ФАП (или ЧАП). Устройство поиска обычно вырабатывает пилообразное напряжение, которое подается на реактивный элемент ГПД и изменяет частоту ГПД в широких пределах. Оно включается при больших расстройках, когда на выходе фазового детектора отсутствует постоянная составляющая напряжения. После установления синхронизма в системе устройство поиска выключается, но управляющее напряжение, соответствующее моменту окончания поиска, запоминается и подается на реактивный элемент ГПД. В процессе дальнейшей работы начальная частота ГПД(частота ГПД при разомкнутом кольце ФАП может изменяться в более широкой полосе, чей полоса захватывания, но не должна уходить за границы полосы удержания.

В современных синтезаторах перестройка ГПД, производятся с помощью варикапов и пределы ее ограничены. Реально полоса пе- рестройки составляет 10-30% от средней частоты ГПД, поэтому в широкополосных синтезаторах применяется не один, а несколько управляемых генераторов. Каждый из них работает в определенном участке диапазона частот, переключение генераторов происходит автоматически, в зависимости от установленной частоты.

 

Принцип компенсации и его использование при построении синтезаторов.

В ряде современных возбудителей и радиоприемников припо­строении тракта стабилизации частоты применяется метод компенсации. Сущность этого метода состоит в том, что в создании сетки стабильных частот участвует вспомогательный нестабилизированный генератор, ошибка настройки которого компенсируется при формировании частоты, выходного сигнала.

Структурные схемы наиболее простого устройства, где исполь­зуется метод компенсации, показаны на рис3.1.32,3.1.33. Такую схему часто называют компенсационной или схемой с двойным преобразованием частоты, она обеспечивает эффективную фильтрацию полезного колебания.

 

 

 

Рис.3.1.32

 

Рис.3.1.33

 

Задача данного устройства заключается в следующем: на вход подается гармоническое колебание со стабильной частотой, на выходе необходимо получать гармонику этого колебания с номером К.

В формирующем устройстве из гармонического колебания создается последовательность коротких импульсов с периодом То= 1/fо. Фильтр Ф1 играет в данной схеме вспомогательную роль. Этот фильтр обеспечивает предварительное выделение группы гармоник вблизи гармоники с номером К, а, главное, обеспечивает подавление тех гармоник, которые могут служить зеркальной помехой для рассматриваемого устройства.

Вспомогательный генератор настраивается так, чтобы в смесителе СМ-1 преобразовать гармонику Кfо в промежуточную частоту fпр = fг –Кfо, лежащую в полосе пропускания фильтра Ф2 (рис.3.1.34).

 

Рис.3.1.34

При этом соседние гармоники с номерами (К+1) и (К-1 ) имеют промежуточные частоты, лежащие за пределами полосы пропускания фильтра, и поэтому эффективно подавляются.

Фильтр Ф2 настраивается на фиксированную частоту fпр, он должен иметь полосу пропускания шириной не более чем fо и достаточно большое затухание за пределами этой полосы.

При втором преобразовании частоты в СМ2 выделяется колебание с частотой fвых = fг – fпр, но учитывая, что fпр= fг – Кfо, то fвых= Кfо. Фильтр Ф3 настраивается на частоту Кfо и предназначен для подавления побочных колебаний, возникающих на выходе СМ2.

Чтобы изменить частоту выходного колебания, достаточно перестроить вспомогательный генератор.

 

Цифровые синтезаторы частоты

 

За последние годы широкое распространение получили синтезаторы, выполненные на основе метода косвенного синтеза с трактом деления частоты и импульсно - фазовой автоподстройкой частоты генератора плавного диапазона. В этих синтезаторах большая часть элементов выполняется на цифровых интегральных элементах, поэтому синтезаторы с трактом деления частоты принято называть цифровыми.

Структурная схема цифрового синтезатора представлена на рис.3.1.35.

 

Рис.3.1.35

На этой схеме ГПД - управляемый генератор, создающий гармонические колебания, ФУ - формирующие устройства, преобразующие гармонические колебания в последовательность импульсов с той же частотой следования, ДПКД - делитель с переменный коэффициентом деления, ИФД - импульсно-фазовый детектор, fо - частота опорного колебания, которая является частотой сравнения.

Колебания ГПД, преобразованные в импульсную последовательность с частотой следования fг поступают на ДПКД, где происходит деление частоты следования импульсов. На выходе ДПКД, имеющего коэффициент деления N, формируется новая последовательность с частотой следования импульсов fг/ N, которая поступает на один из входов ИФД. На второй вход ИФД подается импульсная последовательность с эталонной частотой следования fо.

В ИФД происходит сравнение этих колебаний. В стационарном режиме при наступлении синхронизма в системе обеспечивается равенство частот входных импульсных последовательностей fо=fг/ N.

Настройка ГПД на номинальную частоту fг= fо N происходит автоматически за счет того, что ИФД создает управляющее напряжение, зависящее от разности фаз сравниваемых колебаний.

Для изменения частоты ГПД достаточно изменить коэффициент деления. При изменении коэффициента деления ДПКД от Nмин до Nмакс частота выходного колебания синтезатора изменяется в пределах от fгмин=Nминfо до fмакс=Nмаксfо (с шагом fо).

На рис. 3.1.36 представлены другие возможные схемы диапазонных возбудителей с автоматической подстройкой частоты (частотной – ЧАП и фазовой - ФАП). На рис. 3.1.36: ФНЧ – фильтр нижних частот; ЧД – частотный детектор; ГПД – генератор плавного диапазона; СМ – смеситель; УУ – управляющее устройство; ФД – фазовый детектор.

 

 

 

Рис. 3.1.36

Усилители мощности [5]

Высокочастотные усилители мощности могут быть перестраиваемыми и не перестраиваемыми по частоте.

В схеме перестраиваемого резонансного усилителя обязательным элементом является колебательный контур с элементами согласования связи с антенной, перестройка которых осуществляется путем изменения индуктивности катушек или емкостей конденсаторов общей резонансной системы. Для получения максимального усиления колебательный контур настраивается вручную или автоматически на частоту сигнала возбудителя, что снижает быстродействие станции и позволяет обеспечить подавление только на одной частоте. Такие усилители применялись в станциях помех старого парка.

От этого недостатка избавлены широкополосные усилители мощности (ШПУ), которые применяются на всех современных серийных станциях помех и выполнены по схеме усилителя с распределенным усилением (УРУ) и представляют собой усилитель бегущей волны(Цыкин Г.С. Усилители электрических сигналов.- 2-е изд., переработ.- М.: Энергия, 1969.- 384с.: ил.).

В ШПУ сигналы возбудителя усиливаются без перестройки во всем рабочем диапазоне, что повышает быстродействие любого типа станции и позволяет создавать квазиодновременные помехи на нескольких частотах. Однако для исключения излучения побочных сигналов (гармоник основной частоты) на выходе усилителя включаются фильтры подавления гармоник (ФПГ). Число фильтров определяет число поддиапазонов передатчика. Они переключаются с помощью высокочастотных реле автоматически или вручную.

Принцип построения основного усилительного тракта таких передатчиков поясняется принципиальной схемой УРУ (рис.3.1.37). Простейшим путём является построение усилителей с нагрузкой в виде фильтра нижних частот - усилителей с распределенным усилением.

УРУ представляют собой устройство с параллельным включением усилительных ламп через посредство искусственных линий. Входные и выходные ёмкости ламп входят в качестве элементов длинных линий и не оказывают ограничивающего влияния на верхнюю частоту полосы пропускания усилителя. Усилители строятся по однотактным и двухтактным схемам.

Усилитель имеет две линии передачи (сеточную и анодную) и усилительные элементы, выходные мощности которых суммируются на общей нагрузке. Отрезки линий передачи могут выполняться в виде фильтров нижних частот, как на рисунке, или в виде полосовых фильтров.

Сигнал, приложенный к входу схемы, распространяется вдоль сеточной линии передачи из идентичных фильтров, образованных индуктивностями Lс и ёмкостями Сс. К каждой секции линии присоединены сетки соответствующих ламп.

 

 

Рис.3.1.37.

Сеточная линия на конце нагружена сопротивлением Rс, равном волновому

Этим обеспечивается в линии режим бегущей волны, а входное сопротивление линии остаётся постоянным в рабочем диапазоне частот усилителя.

Анодная линия выполнена аналогично сеточной, а волновое сопротивление определяется индуктивностью LА и ёмкостью СА.

 

С обоих концов анодная линия нагружена на сопротивления RА1 = RА2 = , поэтому в анодной линии имеет место двухсторонний режим бегущей волны.

Волна входного сигнала, распространяясь вдоль сеточной линии, возбуждает в анодной линии по две волны от каждой лампы. Одна из этих волн распространяется влево (по схеме) и поглощается согласующим (балластным) сопротивлением RА1,а вторая достигает сопротивления нагрузки RА2 и выделяет на нём полезную мощность. Необходимым условием работы должно быть одинаковое время задержки сигнала анодной и сеточной линий.

При наличии двухстороннего согласования анодной линии происходит синфазное сложение токов каждой линии в нагрузке. Поскольку ток каждой лампы разветвляется, то общий суммарный ток (от всех ламп) первой гармоники в нагрузке будет в два раза меньше.

В схеме УРУ происходит сложение коэффициентов усиления каскадов, а не перемножение. Из энергетических соображений в УРУ целесообразно применять большое количество ламп.

Амплитуда напряжения на нагрузке не зависит от числа ламп в усилителе и не может превысить величину Uн = IА .

УРУ обладают повышенной надёжностью, так как сохраняют работоспособность при выходе из строя отдельных ламп. Однако при этом несколько ухудшаются амплитудно-частотные характеристики из-за изменения ёмкости лампы, подключаемой к линии.

В качестве согласующих элементов УРУ с антенной (по виду «выход-вход» и по выходному и входному сопротивлениям) применяются специальные симметрирующие и согласующие трансформаторы.

В усилителях мощности используется специальное устройство управления, блокировки и сигнализации (УБС).

УБС обеспечивает:

− принудительное включение (выключение) питающих напряжений в строгой последовательности;

− отключение питающих напряжений при опасных режимах (перегрузка по току блоков питания, обрыв или короткое замыкание в ВЧ тракте передачи энергии, не эффективная работа принудительной системы охлаждения);

− защиту обслуживающего персонала от доступа к токоведущим частям, находящимся под высоким напряжением;

− сигнализацию о выполненных операциях и неисправностях и др.

 

Контрольные вопросы

 

1.Какие требования предъявляются к радиопередающим устройствам? 2.Чем обусловлена необходимость применения многокаскадной схемы построения КВ передатчиков?

3.Каковы особенности построения схем возбудителей КВ и УКВ передатчиков?

4.Дать классификацию схем генераторов с самовозбуждением.

5.Каковы свойства кварцевых резонаторов?