ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

Рис. 2.29. Стабилизатор напряже­ния на микросхеме К142ЕН1 Рис. 2.30. Микросхема К299ЕВ1

Рис. 2.28. Микросхема К181ЕН1

 

Микросхема К181ЕН1 (рис. 2.28) серии К181 выполнена по схеме с последовательным включением регулирующего элемента. Основные каскады стабилизатора — составной регулирующий тран­зистор в, Т7), симметричный дифференциальный усилитель (TS) Тд) и источник опорного напряжения, включающий в себя стаби­литрон Дз и эмиттерный повторитель на транзисторе Ts.

Микросхема К181ЕН1 работает при нестабильном входном на­пряжении 9 — 20 В, обеспечивая стабилизированное выходное на­пряжение 3 — 15 В. Максимальный ток нагрузки не должен пре­вышать 150 мА. Коэффициент нестабильности по напряжению 7-103.

Серия К142 состоит из семи микросхем, пять из которых пред­ставляют собой различные сочетания четырех диодов.

 

Микросхемы К142ЕН1 и К142ЕН2 — регулируемые стабилизато­ры напряжения. Каждую микросхему выпускают в четырех модификациях. Среди них стабилизаторы с коэффициентом нестабиль­ности по напряжению 0,1; 0,3 или 0,5 %, с коэффициентом не­стабильности по току 0,2; 0,5; 1 и 2 %. Нижний предел диапазона регулировки напряжения 3 или 12 В, а верхний 12 или 30 В. Пример построения стабилизатора напряжения на микросхеме К142ЕН1 приведен на рис. 2.29.

Микросхемы серии К278 обеспечивают при выходном напря­жении 12 В и выходном токе 2,5 А коэффициент пульсации ме­нее 0,012.

Серия К299 предназначена для создания выпрямителей с ум­ножением напряжения. Выходное напряжение 2000 — 2400 В. Вы­ходной ток 200 мкА. На рис. 2.30 приведена схема выпрямительной микросхемы К299ЕВ1,

 

 

Особого внимания среди выпускаемых промышленностью ми­кросхем заслуживают операционные усилители (ОУ) серий К140 К153, К284, К544, К553, К710, К740 и др. Интегральные ОУ по­зволяют осуществить до сотни различных схем включения и исполь­зовать одну и ту же микросхему для создания усилителей ВЧ, ПЧ, НЧ, преобразователей, генераторов, детекторов, компарато­ров, активных фильтров и др.

Состав наиболее распространенных серий ОУ и основные па­раметры микросхем приведены в табл. 2.7.

За последние годы значительно расширена номенклатура и повышено качество как ОУ общего применения, так и микромощ­ных, быстродействующих, прецизионных и других ОУ. Благодаря совершенствованию технологии и развитию схемотехники достигну­то повышение коэффициента усиления и коэффициента подавления синфазного сигнала, расширен частотный диапазон, повышено быстродействие и входное сопротивление, уменьшены входные токи и их разности, обеспечена защита выходных каскадов млогих ОУ от перегрузки при коротком замыкании в нагрузке.

В современных ОУ широко применяют супер-|3-транзисторы (Р — несколько тысяч), двухэмиттерные транзисторы, полевые транзисторы, двухколлекторные боковые р-n-р транзисторы, яв­ляющиеся эквивалентами высокоомных генераторов стабильного тока с малыми токами эмиттера, и др.

На рис. 2.31 приведены некоторые варианты применения раз­личных ОУ.

Рассмотрение схемотехнических особенностей ОУ проведем на примере микросхем К140УД1 и К140УД7.

Микросхема К140УД1 представляет собой широкополосный операционный усилитель, принципиальная схема которого показана на рис. 2.32,а.

Усилитель состоит из входного и промежуточного дифферен­циальных усилительных каскадов, каскада смещения уровня и вы­ходного каскада. Он имеет два входа (инвертирующий — вывод 9 и неинвертирующий — вывод 10} и один выход (вывод 5). Напря­жение питания подают на выводы 1 и 7 (соответственно — Еп и +Еп). Вывод 4 — общий, а остальные используют для контроля режима или подключения внешних элементов в зависимости от конкретного применения микросхемы.