ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ
Рис. 2.29. Стабилизатор напряжения на микросхеме К142ЕН1 Рис. 2.30. Микросхема К299ЕВ1
Рис. 2.28. Микросхема К181ЕН1
Микросхема К181ЕН1 (рис. 2.28) серии К181 выполнена по схеме с последовательным включением регулирующего элемента. Основные каскады стабилизатора — составной регулирующий транзистор (Тв, Т7), симметричный дифференциальный усилитель (TS) Тд) и источник опорного напряжения, включающий в себя стабилитрон Дз и эмиттерный повторитель на транзисторе Ts.
Микросхема К181ЕН1 работает при нестабильном входном напряжении 9 — 20 В, обеспечивая стабилизированное выходное напряжение 3 — 15 В. Максимальный ток нагрузки не должен превышать 150 мА. Коэффициент нестабильности по напряжению 7-103.
Серия К142 состоит из семи микросхем, пять из которых представляют собой различные сочетания четырех диодов.
Микросхемы К142ЕН1 и К142ЕН2 — регулируемые стабилизаторы напряжения. Каждую микросхему выпускают в четырех модификациях. Среди них стабилизаторы с коэффициентом нестабильности по напряжению 0,1; 0,3 или 0,5 %, с коэффициентом нестабильности по току 0,2; 0,5; 1 и 2 %. Нижний предел диапазона регулировки напряжения 3 или 12 В, а верхний 12 или 30 В. Пример построения стабилизатора напряжения на микросхеме К142ЕН1 приведен на рис. 2.29.
Микросхемы серии К278 обеспечивают при выходном напряжении 12 В и выходном токе 2,5 А коэффициент пульсации менее 0,012.
Серия К299 предназначена для создания выпрямителей с умножением напряжения. Выходное напряжение 2000 — 2400 В. Выходной ток 200 мкА. На рис. 2.30 приведена схема выпрямительной микросхемы К299ЕВ1,
Особого внимания среди выпускаемых промышленностью микросхем заслуживают операционные усилители (ОУ) серий К140 К153, К284, К544, К553, К710, К740 и др. Интегральные ОУ позволяют осуществить до сотни различных схем включения и использовать одну и ту же микросхему для создания усилителей ВЧ, ПЧ, НЧ, преобразователей, генераторов, детекторов, компараторов, активных фильтров и др.
Состав наиболее распространенных серий ОУ и основные параметры микросхем приведены в табл. 2.7.
За последние годы значительно расширена номенклатура и повышено качество как ОУ общего применения, так и микромощных, быстродействующих, прецизионных и других ОУ. Благодаря совершенствованию технологии и развитию схемотехники достигнуто повышение коэффициента усиления и коэффициента подавления синфазного сигнала, расширен частотный диапазон, повышено быстродействие и входное сопротивление, уменьшены входные токи и их разности, обеспечена защита выходных каскадов млогих ОУ от перегрузки при коротком замыкании в нагрузке.
В современных ОУ широко применяют супер-|3-транзисторы (Р — несколько тысяч), двухэмиттерные транзисторы, полевые транзисторы, двухколлекторные боковые р-n-р транзисторы, являющиеся эквивалентами высокоомных генераторов стабильного тока с малыми токами эмиттера, и др.
На рис. 2.31 приведены некоторые варианты применения различных ОУ.
Рассмотрение схемотехнических особенностей ОУ проведем на примере микросхем К140УД1 и К140УД7.
Микросхема К140УД1 представляет собой широкополосный операционный усилитель, принципиальная схема которого показана на рис. 2.32,а.
Усилитель состоит из входного и промежуточного дифференциальных усилительных каскадов, каскада смещения уровня и выходного каскада. Он имеет два входа (инвертирующий — вывод 9 и неинвертирующий — вывод 10} и один выход (вывод 5). Напряжение питания подают на выводы 1 и 7 (соответственно — Еп и +Еп). Вывод 4 — общий, а остальные используют для контроля режима или подключения внешних элементов в зависимости от конкретного применения микросхемы.