УСТРОЙСТВО ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Рис. 1.1. Функциональный узел Рис. 1.2. Интегральная микро­схема

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА-СОВРЕМЕННЫЙ ФУНКЦИОНАЛЬНЫЙ УЗЕЛ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

ОБЩИЕ СВЕДЕНИЯ ОБ ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

Глава первая

ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ

Издательство «Радио и связь», 1983

Издательство «Энергия», 1978

Справочное пособие

МИКРОСХЕМЫ И ИХ ПРИМЕНЕНИЕ

Эталоны ответов на банк тестов ПМ01

раздел «Диагностика в акушерстве»

специальности «Лечебное дело»

 

 

 

 

 

 

 

 

XXVI съезд КПСС выдвинул среди других задачу тех­нического перевооружения производства, быстрейшего создания и повсеместного внедрения принципиально новой техники и материа­лов. В решении этой задачи важная роль принадлежит современной Микроэлектронике. В планах экономического развития нашей страны указан ряд важнейших технических областей, таких как, например, Встроенные системы автоматического управления, где уже сегодня должна широко внедряться самая современная микроэлектронная элементная база, микропроцессоры и микро-ЭВМ.

Проникнув в разнообразные виды радиоэлектронной техники — от сложнейших управляющих комплексов до бытовых приборов и устройств, интегральные микросхемы значительно расширили сферу применения радиоэлектронных средств и обеспечили высокий техни­ко-экономический эффект от их внедрения. В связи с этим возникает необходимость в ознакомлении широкого круга читателей, интере­сующихся успехами полупроводниковой электроники и имеющих опыт работы в данной области, с номенклатурой и с практическими вопросами применения интегральных микросхем, выпускаемых оте­чественной промышленностью, с особенностями конструирования ра­диоэлектронной аппаратуры на их основе.

Первое издание книги вышло в 1978 г. За прошедшее время достигнуты значительные успехи в развитии микроэлектронной эле­ментной базы. Популярные серии микросхем пополнились сложными микроэлектронными функциональными узлами с высокой степенью интеграции. Разработаны и освоены в серийном производстве новые серии аналоговых и цифровых микросхем, построенные на перспек­тивных схемотехнических принципах и имеющие улучшенные функ­циональные и электрические характеристики.

В практику разработки радиоэлектронной аппаратуры все шире внедряются программно-управляемые универсальные микроэлектрон­ные устройства — микропроцессоры. Выпускаемые серийно комплек­ты микропроцессорных интегральных схем по своим функциональ­ным возможностям и электрическим характеристикам удовлетворяют требованиям многих областей применения: аппаратуры автоматиче­ского управления, связи, измерительной техники, бытовых приборов и т. д. Появились первые однокристальные микро-ЭВМ.

Значительно расширена номенклатура микроэлектронных опера­ционных усилителей, микросхем для запоминающих устройств, ана­лого-цифровых и цифроаналоговых преобразователей и др.

Накоплен большой практический опыт по применению микро­схем в радиоэлектронной аппаратуре, в том числе и радиолюби­тельской.

Указанные изменения, произошедшие после выхода в свет пер­вого издания книги, обусловили необходимость ее второго издания, переработанного и дополненного.

В предлагаемой читателям книге даны общие сведения об инте­гральных микросхемах, выпускаемых промышленностью, рассмотрены принципы их функциональной классификации, приведены коли­чественные значения основных параметров, изложены конструктив­ные особенности микросхем. Рассмотрен состав основных серий ана­логовых и цифровых микросхем, приведены примеры реализации на них функциональных узлов. Изложены особенности и примеры при­менения микросхем в радиолюбительских разработках.

Рассмотрены также особенности проектирования, конструирова­ния и эксплуатации аппаратуры на микросхемах.

В целом задачей книги является показ возможностей отечест­венных микросхем, а также условий их применения на базе обоб­щения практического опыта.

Во втором издании книги существенно обновлены все главы, включен материал по микросхемам, выпущенным отечественной про­мышленностью в последние годы, значительное внимание уделено тем из них, в рекомендациях по применению которых особенно остро нуждаются радиолюбители. В книгу введены две новые гла­вы, посвященные микропроцессорам, большим интегральным схемам памяти, аналого-цифровым и цифроаналоговым преобразователям, даны описания и принципы реализации новых устройств промыш­ленной и бытовой техники.

Глава 1 написана Батушевым В. А., гл. 2 — Вениаминовым В. Н., гл. 3 и § 7.6 — Ковалевым В. Г., гл. 4 и 5 — Лебедевым О. Н., гл. 6, 7 (кроме § 7.6) и 8 — Мирошниченко А. И., § 7.3 — написан совместно Ковалевым В. Г. и Мирошниченко А. И.

При подготовке второго издания были учтены критические за­мечания, пожелания и рекомендации многочисленных читателей, приславших письма. Авторы выражают признательность канд. техн. наук Бедрековскому М. А. за ценные замечания, сделанные им при рецензировании книги.

Авторы надеются, что книга будет с интересом встречена ши­роким кругом радиолюбителей.

Отзыв о книге просим присылать по адресу: 101000, Москва, Главпочтамт, а/я 693, издательство «Радио и связь», Массовая ра­диобиблиотека.

Авторы

 

 

 

Полевые и биполярные транзисторы, полупроводниковые диоды и резисторы, конденсаторы и прочие электронные приборы и радиодетали часто называют элементами радиоэлектронной аппара­туры (РЭА), или электрорадиоэлементами, так как они составляют основу функциональных структур, реализующих обусловленные на­значением аппаратуры алгоритмы формирования, преобразования хранения, обработки и воспроизведения сигналов.

Предприятия электронной промышленности выпускают типовые электрорадиоэлементы в широком ассортименте в качестве комплек­тующих изделий. Изготовление же аппаратуры заключается факти­чески в сборке ее из готовых электрорадиоэлементов с применением межсоединений и конструктивных элементов, обеспечивающих не­обходимое пространственное расположение частей аппаратуры, со­единение их в единую функциональную структуру, защиту от воз­действий окружающей среды и поддержание теплового режима. Отдельные группы электрорадиоэлементов, совместно выполняющие единую функцию, могут из технологических или эксплуатационных соображений объединяться при этом в конструктивно завершенные сборочные единицы, называемые функциональными узлами (рис. 1.1). Узлы в свою очередь могут объединяться в субблоки, субблоки — в блоки (см. гл. 8) и т. д.

 

В последние 20 лет получила широкое распространение иная технология изготовления функциональных узлов, при которой про­цессы изготовления входящих в узел электрорадиоэлементов и про­цессы объединения их в функциональную конструктивно завершен­ную структуру совмещаются. Эта технология получила название интегральной (от латинского integre — целый, неразрывно связан­ный). Функциональные узлы РЭА, изготовляемые методом инте­гральной технологии, были названы интегральными микросхемами (ИС) (рис. 1.2). Приставка «микро» подчеркивает характерную осо­бенность интегральной технологии — высокий уровень миниатюри­зации, достигаемый в ее изделиях.

Проблема миниатюризации традиционна для радиоэлектроники, но значение ее непрерывно растет по мере расширения областей применения РЭА, усложнения радиооборудования и повышения ответственности выполняемых им функций. Для функциональных узлов аппаратуры удобным показателем уровня миниатюризации является плотность упаковки, характеризуемая отношением числа элементов, содержащихся в узле, к объему, занимаемому узлом.

Опыт показал, что при сборке маломощных функциональных узлов из готовых электрорадиоэлементов не удается поднять плот­ность упаковки выше 2 эл/см3 даже при использовании самых ми­ниатюрных полупроводниковых приборов и пассивных элементов. Интегральная же технология позволяет получить в тысячи раз большую плотность упаковки при невысокой стоимости и большой надежности. Эта замечательная черта интегральной технологии, открывшая широкие возможности миниатюризации радиоэлектрон­ных изделий, и явилась причиной широкого и быстрого внедрения ИС в РЭА, где они в настоящее время стали основным типом функционального узла.

Переход от традиционных методов сборки функциональных узлов аппаратуры из готовых типовых электрорадиоэлементов к принципиально новой технологии, совмещающей процессы изго­товления элементов и процессы объединения их в конструктивно завершенную функциональную структуру, стал возможным лишь благодаря полупроводниковой технологии, освоившей значительное количество новых весьма эффективных приемов и процессов. Ре­зультаты этого перехода оказались столь существенными, что зна­меновали подъем всей электроники на качественно новый уровень, Появление ИС — это фактически создание новой, более совершенной элементной базы РЭА. Интегральная технология изменила представ­ление об оптимальных функциональных структурах радиоэлектрон­ных устройств и их функциональном базисе. Она вызвала к жизни новые принципы и способы конструирования аппаратуры, оказывает глубокое влияние на все этапы изготовления радиоэлектронных устройств и на способы их эксплуатации, невиданно расширяет сфе­ру их применения. Произошло формирование специальной отрасли электроники, разрабатывающей проблемы конструирования и про­изводства электронных изделий на базе интегральной технологии. Эта отрасль получила название микроэлектроники.