Газовая сварка

процесс,при котором плавление основного и присадочного материала происходит в пламени открытой горелки.Поддержание пламени горелки осуществляют подачей одного,или нескольких горючих газов или жидкостей в смеси с кислородом.Пламя может быть окислительным или восстановительным, это регулируется количеством кислорода. В зависимости от состава основного металла выбирают состав присадочных прутков; а в зависимости от толщины основного металла — диаметр.

Газовая сварка характеризуется плавным и медленным нагревом металла, что обусловливает основные области его применения для сварки:

-стали толщиной 0,2—5 мм (с увеличением толщины металла, в связи с медленным нагревом, снижается производительность);

-цветных металлов;

-инструментальных сталей, требующих постепенного мягкого нагрева и замедленного охлаждения;

-чугуна и некоторых специальных сталей, требующих подогрева при сварке;

Для сварки необходимы

Газы – кислород и горючий газ (ацетилен или его заменитель);

Присадочная проволока (для сварки и наплавки);

Соответствующее оборудование и аппаратура, в том числе:

а) кислородные баллоны для хранения запаса кислорода;

б) кислородные редукторы для понижения давления кислорода, подаваемого из баллонов в горелку или резак;

в) ацетиленовые генераторы для получения ацетилена из карбида кальция или ацетиленовые баллоны, в которых ацетилен находится под давлением и растворен в ацетилене;

г) сварочные, наплавочные, закалочные и другие горелки с набором наконечников для нагрева метла различной толщины;

д) резиновые рукава (шланги) для подачи кислорода и ацетилена в горелку;

Принадлежности для сварки: очки с темными стеклами (светофильтрами) для защиты глаз от яркого света сварочного пламени, молоток, набора ключей для горелки, стальные щетки для очистки металла и сварочного шва;

Сварочный стол или приспособление для сборки и закрепления деталей при прихватке, сварки;

Флюсы или сварочные порошки, если они требуются для сварки данного металла.

 

а) Холодная сварка. Две тщательно очищенные у стыка пластины обжимают шайбами, исключающими выпучивание при деформации (дет.1), затем вдавливают пуансоны из твердого металла. При этом металл пластин сильно деформируется и течет вблизи поверхностей раздела. Ювенильные поверхности войдут в соприкосновение и между ними возникнут межатомные силы сцепления. При таком способе степень деформации зависит от свойств металла, свойств пленок окислов и схемы деформирования, а также глубины вдавливания пуансонов. Этот способ применим для пластичных металлов (Al, Cu, Ag, Ni) при соединениях внахлестку и встык

б) Ультразвуковая сварка. Разрушение поверхностных окисных пленок и проявление межатомных сил сцепления может произойти при местной деформации поверхностей в месте контакта при введении в металл ультразвуковых колебаний.

Генератор, дающий частоту 8-15 кГц, и пуансон приводят к разрушению окислов, некоторому местному повышению температуры (~350°С) и свариванию. Таким способом сваривают при точечной и шовной контактной сварке тонкие листы (0,05-0,6мм) или тонкие с толстыми.

 

в) Кузнечно-горновая сварка. Это самый древний способ, имеющий сейчас ограниченное применение. После разогрева в горне металла до температуры сварочного жара (1100-1300°) осуществляют сварочную операцию ручной или механизированной проковкой. Очистка окислов производится механическим способом и флюсованием (для оставшихся) – бура Na2B4O7, поваренная соль NaCl, речной песок SiO2.

г) Газопрессовая сварка. Принцип газопрессовой сварки аналогичен кузнечно-горновой с использованием для нагрева пламени газообразных горючих. Осуществляется как с последовательным нагревом от участка к участку с соответствующей их проковкой или статическим сдавливанием (чаще продольные швы, газовое пламя Т=1800°С) так и с одновременным нагревом сечения свариваемых элементов и их последующим одновременным сдавливанием (кольцевые швы, ацетилено-кислородное пламя, Т =3000°С).

д) Электрическая контактная сварка. Этот способ сварки один из самых важных и используется преимущественно в массовом иди серийном производстве однотипных изделий. Этот способ основан на разогреве металла проходящим по нему током. Количество выделяемого в металле тепла определяется законом Джоуля-Ленца.

В последовательной цепи на участке большего сопротивления (место контакта деталей) выделяется и большее количество тепла. Выбором соответствующей мощности для различных деталей можно обеспечить их быстрый нагрев (0,003÷10 сек.) и сварку последующим обжатием. При этом ввиду большой электропроводности и малого удельного сопротивления металлов необходимо пользоваться большими токами – до нескольких тыс., даже десятков тыс., ампер при очень малом напряжении (U = I•R, U ≈ 2-6 вольт). Обычно используют переменный ток с применением силовых понижающих трансформаторов с регулятором.

Токарная обработка — это механическая обработка резанием наружных и внутренних поверхностей вращения, в том числе цилиндрических и конических, торцевание, отрезание, снятие фасок, обработка галтелей, прорезание канавок, нарезание внутренних и наружных резьб на токарных станках. Точение — одна из самых древних технических операций, которая была механизирована с помощью примитивного токарного станка.

Сверление — вид механической обработки материалов резанием, при котором с помощью специального вращающегося режущего инструмента (сверла) получают отверстия различного диаметра и глубины, или многогранные отверстия различного сечения и глубины

Шлифовáние — механическая или ручная операция по обработке твёрдого материала (металл, стекло, гранит, алмаз и др.). Разновидность абразивной обработки, которая, в свою очередь, является разновидностью резания. Механическое шлифование обычно используется для обработки твёрдых и хрупких материалов в заданный размер с точностью до микрона . А также для достижения наименьшей шероховатости поверхности изделия допустимых ГОСТом. В качестве охлаждения обычно используют смазочно-охлаждающие жидкости (СОЖ).

Полирование является отделочной операцией обработки металлических и неметаллических поверхностей. Суть полирования — снятие тончайших слоев обрабатываемого материала механическим, химическим или электролитическим методом и придание поверхности малой шероховатости и зеркального блеска.

Фрезерование (фрезерная обработка) — это процесс механической обработки, при котором режущий инструмент (фреза) совершает вращательное движение (со скоростью U), а обрабатываемая заготовка — поступательное (со скоростью подачи S).

Строгание — процесс обработки материалов резанием путём снятия стружки, осуществляемый при относительном возвратно-поступательном движении инструмента или изделия.

 

Глубина резания — толщина снимаемого слоя металла за один проход (расстояние между обрабатываемой и обработанной поверхностями, измеренное по нормали).

Скорость резания — скорость инструмента или заготовки в направлении главного движения, в результате которого происходит отделение стружки от заготовки, подача — скорость в направлении движения подачи. Другими словами, это путь, пройденный в минуту точкой, лежащей на обрабатываемой поверхности относительно режущей кромки резца. Например, при точении скоростью резания называется скорость перемещения обрабатываемой заготовки относительно режущей кромки резца (окружная скорость).

 

Основным технологическим (машинным) временем называется время, затрачиваемое непосредственно на процесс изменения формы и размеров заготовки и получение поверхности требуемой шероховатости. В общем случае время равно пути делённому на скорость. Путь при точении – это длина обработки, скорость – это скорость подачи в м/мин, равная произведению nS.

 

Токарный проходной резец состоит из следующих основных элементов:

Рабочая часть (головка);

Стержень (державка) — служит для закрепления резца на станке.

Рабочую часть резца образуют:

Передняя поверхность — поверхность, по которой сходит стружка в процессе резания.

Главная задняя поверхность — поверхность, обращенная к поверхности резания заготовки.

Вспомогательная задняя поверхность — поверхность, обращенная к обработанной поверхности заготовки.

Главная режущая кромка — линия пересечения передней и главной задней поверхностей.

Вспомогательная режущая кромка — линия пересечения передней и вспомогательной задней поверхностей.

Вершина резца — точка пересечения главной и вспомогательной режущих кромок.

Главные углы измеряются в главной секущей плоскости. Сумма углов α+β+γ=90°.

Главный задний угол α — угол между главной задней поверхностью резца и плоскостью резания. Служит для уменьшения трения между задней поверхностью резца и деталью. С увеличением заднего угла шероховатость обработанной поверхности уменьшается, но при большом заднем угле резец может сломаться. Следовательно чем мягче металл, тем больше должен быть угол.

Угол заострения β — угол между передней и главной задней поверхностью резца. Влияет на прочность резца, которая повышается с увеличением угла.

Главный передний угол γ — угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания, проведённой через главную режущую кромку. Служит для уменьшения деформации срезаемого слоя. С увеличением переднего угла облегчается врезание резца в металл, уменьшается сила резания и расход мощности. Резцы с отрицательным γ применяют для обдирочных работ с ударной нагрузкой. Преимущество таких резцов на обдирочных работах заключается в том, что удары воспринимаются не режущей кромкой, а всей передней поверхностью.

Угол резания δ=α+β.

 

 

 

Сила Pz действует на резец сверху вниз и изгибает резец вниз, а резец силой своего сопротивления отжимает изделие вверх. Эта сила Pz называется силой резания. Сила Px действует на резец в направлении, противоположном направлению подачи, и изгибает резец в сторону задней бабки, а сила сопротивления резца сдвигает изделие в сторону передней бабки. Эта сила Px называется силой подачи. Сила Py действует на резец в той же плоскости, что и сила Px, но в направлении, перпендикулярном направлению подачи, и отжимает резец от обрабатываемого изделия, которое одновременно подвергается изгибающему действию силы сопротивления резца. Эта сила Pyназывается радиальной силой.

При резании металлов затрачивается работа на пластические и упругие деформации в срезаемом слое и в слое, прилегающем к обработанной поверхности и поверхности резания, а также на преодоление трения по передней и задней поверхностям резца.

Работа, затрачиваемая на пластические деформации, составляет около 80% всей работы резания, а работа трения — около 20%. Примерно 85—90% всей работы резания превращается в тепло.

Образующееся тепло поглощается стружкой — 50—86%, резцом—10—40%, обрабатываемой деталью — 3—9% и около 1% тепла рассеивается в окружающей среде излучением.

На величину температуры в зоне резания оказывают влияние физико-механические свойства обрабатываемого материала, режимы резания, геометрические параметры инструмента и применение смазочно-охлаждающей жидкости.

При обработке стали выделяется больше тепла, чем при обработке чугуна. Чем выше предел прочности σв и твердость обрабатываемого материала, тем выше температура в зоне контакта инструмента с деталью.

С увеличением подачи температура в зоне резания повышается, но менее интенсивно, чем при увеличении скорости резания. Еще меньшее влияние на температуру оказывает глубина резания.

С увеличением угла резания δ и главного угла в плане φ температура в зоне резания возрастает, а с увеличением радиуса закругления резца r уменьшается.

Применение смазочно-охлаждающей жидкости существенно уменьшает температуру в зоне резания.

Высокая температура в зоне резания оказывает непосредственное влияние на износостойкость инструмента, состояние обрабатываемого материала, качество обработанной поверхности детали и производительность процесса резания.