Основные элементы электроники

Раздел 6

Раздел 5

Цифровая интегральная микросхема (цифровая микросхема) — это интегральная микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции.

Цифровая интегральная микросхема - ИМС, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. Одним из видов цифровых ИМС является логическая ИМС. [1]

Цифровая интегральная микросхема - микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. [2]

Цифровая интегральная микросхема - микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся но закону дискретной функции. [4]

Цифровая интегральная микросхема - микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. [5]

Цифровая интегральная микросхема ( цифровая микросхема) - это интегральная микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. [6]

Нацифровых интегральных микросхемах выполнены устройства и системы обработки больших потоков цифровой информации - системы автоматического регулирования, ЭВМ большой и малой производительности, а также микроЭВМ, предназначенные, как правило, для узкого применения. [7]

Вцифровых интегральных микросхемах активные элементы работают в ключевом режиме. Их применяют главным образом в вычислительных машинах. [8]

Основной характеристикойцифровых интегральных микросхем, широко применяемых в ЭВМ, является время задержки сигнала т при переключении из состояния 1 в О и обратно. Исследования показывают, что для данного уровня технологии производства микросхем с достаточной точностью считаем Pr const. [9]

В серияхцифровых интегральных микросхем имеются АЛУ, построенные по принципу разрядного слоя. Они допускают соединение друг с другом для получения АЛУ требуемой разрядности. [10]

В основецифровых интегральных микросхем лежат транзисторные ключи, способные находиться в двух устойчивых состояниях: открытом и закрытом. Использование транзисторных ключей дает возможность создавать различные логические, триггер-ные и другие интегральные микросхемы. [11]

Книга посвященацифровым интегральным микросхемам, применяемым в информационно-измерительной технике. Рассмотрены элементная база, функциональные особенности и способы включения микросхем малого и среднего уровней интеграции. Материал изложен применительно к устройствам ТТЛ ( ТТЛШ), КМОП-структуры и отчасти ДТЛ. Изложение сопровождается примерами практического использования цифровых микросхем. [12]

Наличие такого многообразияцифровых интегральных микросхем позволяет создать надежные и компактные устройства телемеханики нового поколения; конкретные примеры создания узлов на базе интегральных схем будут рассмотрены в других главах. [13]

Наиболее часто вцифровых интегральных микросхемах, а также в импульсных устройствах применяют триггеры с единственным входом данных D ( data), так называемые D-триггеры. [1]

При конструировании устройств нацифровых интегральных микросхемах типа ДТЛ ( диодно-транзисторные логические схемы) или ТТЛ ( транзисторно-транзисторные логические схемы) целесообразно осуществлять контроль напряжений на входах и выходах. Для этой цели могут использоваться испытательные приборы, которые светом лампочек или светодиодов реагируют на работу логических схем. [2]

Быстрое развитие мироэлектроники как одной из самых обширных областей промышленности обусловлено следующими факторами:

1) Надежность - комплексное свойство, которое в зависимости от на­значения изделия и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определенное сочетание этих свойств как изделий в целом так и его частей. Надежность работы ИМС обусловлена монолитностью их структуры, а также защищенностью интегральных структур от внешних воздействий с помощью герметичных корпусов, в которых, как правило, выпускаются серийные ИМС.

2) Снижение габаритов и массы. Значительное уменьшение массы и размеров конкретных радиоэлектронных приборов без потери качества работы также является одним из решающих факторов при выборе ИМС при разработке различных приборов и узлов радиоэлектронной аппаратуры.

 

Элементы функциональной электроники
Оптопары и оптоэлектронные микросхемы
Основные понятия и определения
Оптрон – оптоэлектронный прибор, в котором в едином конструктиве выполнены источник излучения, приемник излучения, оптический канал связи между источником и приемником. Принцип действия оптронов основан на преобразовании электрической энергии в световую, передаче световой энергии по каналу связи, и преобразовании световой энергии в электрическую.

Оптоэлектронная интегральная схема – микросхема, состоящая из одной или нескольких оптопар и согласующих или усилительных каскадов.

Как правило, любое электронное функциональное устройство состоит из отдельных элементов, скреплённых между собой согласно принципиальной схеме. Выбор элементов и их тип зависит от назначения устройства, среды использования, а так же от сложности исполнения.

Электронные компоненты, применяемые в каком либо устройстве, выполненные в заводских условиях имеют законченный вид и форму в соответствии с техническими условиями. Элементы электроники, используемые для конструирования, производства и ремонта электронной аппаратуры, делятся на группы: резисторы, диоды, конденсаторы, транзисторы и прочие.

Резисторы Предохранители Трансформаторы Источники тока
Диоды Конденсаторы Транзисторы Соединения
Обозначение реле      

Функциона́льная (микро)электро́ника — одно из современных направлений микроэлектроники, основанное на использовании физических принципов интеграции и динамических неоднородностей, обеспечивающих несхемотехнические принципы работы устройств. Функциональная интеграция обеспечивает работу прибора, как единого целого. Разделение его на элементы приводит к нарушению функционирования.