Конструкция и детали

Источник питания

Усилитель питается двухполярным напряжением (т.е. это два одинаковых источника, соединенных последовательно, а их общая точка подключена к земле).

Минимальное напряжение питания по даташиту +- 10 вольт. Я лично пробовал питать от +-14 вольт - микросхема работает, но стОит ли так делать? Ведь выходная мощность получается мизерной! Максимальное напряжение питания зависит от сопротивления нагрузки (это напряжение каждого плеча источника):

Сопротивление нагрузки, Ом Максимальное напряжение питания, В

Эта зависимость вызвана допустимым нагревом микросхемы. Если микросхема установлена на маленьком радиаторе, напряжение питания лучше снизить. Максимальная выходная мощность, получаемая от усилителя приблизительно описывается формулой:

 

где единицы: В, Ом, Вт (я отдельно исследую этот вопрос и опишу), а Uип - напряжения одного плеча источника питания в режиме молчания.

Мощность блока питания должна быть ватт на 20 больше, чем выходная мощность. Диоды выпрямителя рассчитаны на ток не менее 10 Ампер. Емкость конденсаторов фильтра не менее 10 000 мкФ на плечо (можно и меньше, но максимальная мощность снизится а искажения возрастут).

Нужно помнить, что напряжение выпрямителя на холостом ходу в 1,4 раза выше, чем напряжение на втоичной обмотке трансформатора, поэтому не спалите микросхему! Простая, но довольно точная программа для расчета блока питания (zip-файл около 230 кБайт). И не забывайте, что для стереоусилителя нужен вдвое более мощный блок питания (при расчете по поредлагаемой программе все учитывается автоматически).

Обязательно должен быть предохранитель как минимум в первичной обмотке трансформатора! Помните, что высокое напряжение опасно для жизни, а короткое замыкание может привести к пожару!

 

В цепь "земли" предохранитель включать нельзя!

 

От импульсного источника схема тоже работает, но тут высокие требования предъявляются к самому источнику - малые пульсации, возможность отдавать ток до 10 ампер без проблем, сильных "просадок" и срывов генерации. Помните, что высокочастотные пульсации подавляются микросхемой гораздо хуже, поэтому уровень искажений может повысится в 10-100 раз, хотя "на вид" там все в порядке. Хороший импульсный источник, пригодный для Hi-Fi аудио - это сложное и недешевое устройство, поэтому изготовить "старомодный" аналоговый блок питания будет зачастую проще и дешевле.

 

Весь набор документации (печатная плата в формате Sprint-Layout 4.0, схема в формате pdf, расположение деталей на плате в формате gif) упакованный в архив zip ~ 120 кбайт.

Печатная плата односторонняя и имеет размеры 65х70 мм:

     

На фото справа плата с микросхемой 7293, отличающаяся только расположением конденсаторов С8, С9.

Плата разведена с учетом всех требований, предъявляемых к разводке высококачественных усилителей. Вход разведен максимально далеко от выхода, и заключен в "экран" из разделенной земли - входной и выходной. Дорожки питания, обеспечивают максимальную эффективность фильтрующих конденсаторов (при этом длинна выводов конденсаторов С10 и С12 должна быть минимальна). В своей экспериментальной плате я установил клемники для подключения входа, выхода и питания - место под них предусмотрено (может несколько мешать конденсатор С10), но для стационарных конструкций лучше все эти провода припаять - так надежнее.

Широкие дорожки кроме низкого сопротивления обладают еще тем преимуществом, что труднее отслаиваются при перегреве. Да и при изготовлении "лазерно-утюжным" методом если где и не "пропечатается" квадрат 1 мм х 1 мм, то не страшно - все равно проводник не оборвется. Кроме того, широкий проводник лучше держит тяжелые детали (а тонкий может просто отклеиться от платы).

Дорожки рекомендуется облудить - и сопротивление меньше, и коррозия.

На плате всего одна перемычка. Она лежит под выводами микросхемы, поэтому ее нужно монтировать первой, а под выводами оставить достаточно места, чтобы не замкнуло.

Резисторы все, кроме R9 мощностью 0,12 Вт, Конденсаторы С9, С10, С12 К73-17 63В, С4 я использовал К10-47в 6,8 мкФ 25В (в кладовке завалялся... С такой емкостью даже без конденсатора С3 частота среза по цепи ООС получается 20 Гц - там, где не нужно глубоких басов, одного такого конденсатора вполне достаточно). Однако я рекомендую все конденсаторы использовать типа К73-17. Использование дорогих "аудиофильских" я считаю неоправданным экономически, а дешевые "керамические" дадут худший звук (это по идее, в принципе - пожалуйста, только помните, что некоторые из них выдерживают напряжение не более 16 вольт и в качестве С7 их использовать нельзя). Электролиты подойдут любые современные. На плате нанесена полярность подключения всех электролитических конденсаторов и диода. Диод - любой маломощный выпрямительный, выдерживающий обратное напряжение не менее 50 вольт, например 1N4001-1N4007. Высокочастотные диоды лучше не использовать.

В углах платы предусмотрено место для отверстий крепежных винтов М3 - можно крепить плату только за корпус микросхемы, но все же надежнее еще и прихватить винтами.

Микросхему обязательно установить на радиатор площадью не менее 350 см2. Лучше больше. В принципе в нее встроена тепловая защита, но судьбу лучше не искушать. Даже если предполагается активное охлаждение, все равно радиатор должен быть достаточно массивным: при импульсном тепловыделении, что характерно для музыки, тепло более эффективно отбирается теплоемкостью радиатора (т.е. большая холодная железка), нежели рассеиванием в окружающую среду.

Металлический корпус микросхемы соединен с "минусом" питания. Отсюда возникают два способа установки ее на радиатор:

  1. Через изолирующую прокладку, при этом радиатор может быть электрически соединен с корпусом.
  2. Напрямую, при этом радиатор обязательно электрически изолирован от корпуса.

Первый вариант рекомендуется, если вы собираетесь ронять в корпус металлические предметы (скрепки, монеты, отвертки), чтобы не было замыкания. При этом прокладка должна быть по возможности тоньше, а радиатор - больше.

Второй вариант (мой любимый) обеспечивает лучшее охлаждение, но требует аккуратности, например не демонтировать микросхему при включенном питании.

В обоих случаях нужно использовать теплопроводящую пасту, причем в 1-м варианте она должна быть нанесена и между корпусом микросхемы и прокладкой, и между прокладкой и радиатором.