Нанотехнологии в автомобилестроении

Рис.1. Волокнистые композиты

Введение

Содержание

Введение….……………………………………………………………………….…..3

1. Нанотехнологии в автомобилестроении…………..…………………………..... 6

1.2. Нанокомпозиты General Motors………………………………………………...11

1.3. Инновационные покрытия с наночастицами………………………………….14

1.4. Перспективные разработки Volkswagen………………………………………15

2. Наноиндустрия в России……………………………………………………...… 17

3. Будущее нанотехнологий: проблемы и перспективы………….……………… 20

3.1. Опасности, которыми не следует пренебрегать…………………………...….21

4. Список литературы ………………………….……………………………………25

Композиты - многокомпонентные материалы, состоящие из полимерной, металлической, углеродной, керамической или другой основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композиционные материалы (ПКМ)) или наполнителей разл. природы (гибридные композиционные материалы) значительно расширяет возможности регулирования свойств композиционных материалов. Армирующие наполнители воспринимают основную долю нагрузки композиционных материалов.

По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсноупрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне- и химическую стойкость. По природе матричного материала различают полимерные, металлические, углеродные, керамические и другие композиты. Наиболее широкое применение в технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальдегидных, полиимидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики),углеродными (углепластики),орг. (органопластики),борными (боропластики)и другими волокнами; металлические композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой; композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидкремниевыми и другими жаростойкими волокнами и SiC.

 

При использовании углеродных, стеклянных, арамидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции с ударной прочностью и ударным модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и другим свойствам.

Развитие приборо-, авиа- и ракетостроения, химической и других отраслей промышленности требует создания новых ПКМ с улучшенным комплексом свойств. Известно, что температура, при которой ПКМ сохраняют формоустойчивость и свойства, не превышает 400ºС, а углеродные материалы способны работать при 600-1000ºС. ПКМ на основе фенолоформальдегидных смол (ФФС) при высоких температурах образуют термостойкие углеродные материалы. Введение металлокомплексных соединений в ПКМ в наноразмерном состоянии (до 100 нм) приводит к улучшению свойств. Наноразмерные частицы (НРЧ) существенно отличаются от металлических порошкообразных наполнителей с размером частиц более 0,1-10 мкм, обычно используемых при создании ПКМ тем, что проявляют квантово-размерные свойства. Стабилизированные НРЧ, равномерно распределенные в полимерной матрице, уже при малых содержаниях в ПКМ (до 5 масс %) способны образовывать дополнительные узлы сетки, взаимодействовать с полимерными матрицами, что может привести к изменению прочностных характеристик полимерных нанокомпозитов (НК).

 

Автомобили будущего станут более комфортными и интеллектуальными, основанными на легких и прочных материалах, миниатюризации и новых энергетических установках. Практически каждая деталь автомобиля может быть усовершенствована при помощи нанотехнологий. Сегодня нанотехнологии внедряют несколько крупнейших производителей, но к 2010 году их будут использовать все автомобилестроители и большинство их поставщиков. 70 ведущих мировых автомобилестроителей, включая Renault, General Motors, BMW, Toyota, Audi, Ford, Volkswagen, Mercedes-Benz, Opel, Ferrari, MAN, FIAT, Volvo, Hyundai, Honda, Nissan, Chrysler, Jaguar, Porsche, Peugeot, Saab, Rover, Citroen, Huachangcar, Mazda, Alfa Romeo, Asia Motors, Mitsubishi, Vauxhall, Subaru и др., провели совместное исследование возможностей применения нанотехнологий в автомобилях с 2002 до 2015 года.