Аксиома четвертая и последняя

В процессе передачи из поколения в поколение генетические программы в результате многих причин изменяются случайно и ненаправленно, и лишь случайно эти изменения оказываются приспособительными.

 

Третья аксиома вытекает из важнейших физических постулатов – из практической невозможности знать координаты и импульсы всех молекул в клетке, из чего следует распределение энергий молекул по Максвеллу, и из принципиальной невозможности достаточно точно определить координаты и импульсы частиц, атакующих гены (принцип Гейзенберга).

А так как и перераспределение энергий в совокупности молекул, и взаимодействие молекул в химических реакциях в конце концов можно свести к квантовомеханическим процессам, то и получается, что аксиома №3 – следствие квантовой механики.

Далеко не всем это нравится. М. Эйген в книге, на которую я уже ссылался, по этому поводу вспоминает Эйнштейна. В письме от 4 декабря 1926 года Эйнштейн писал Максу Борну: «Квантовая механика внушает большое почтение. Но внутренний голос говорит мне, что это не истинный Иаков. Теория дает много, но едва ли она подводит нас ближе к тайне Старика. Во всяком случае, я убежден, что он не играет в кости…»

Старик – это бог, Не следует считать Эйнштейна религиозным. Поклонник Спинозы, он называл богом реально существующую природу.

С тех пор прошло более 50 лет: Квантовая механика многократно показала свою непротиворечивость природе, и вряд ли даже Эйнштейн сейчас выступал бы против нее. Однако в биологии до сих пор есть авторы, не признающие ненаправленной случайной изменчивости по Дарвину.

В конечном счете они склоняются к точке зрения, высказанной за полвека до Дарвина в 1809 году великим французским натуралистом Ламарком. Согласно Ламарку, организмы в процессе эволюции изменяются, но изменения эти массовые, направленные и приспособительные. Со времени Ламарка их называли по‑разному: наследованием благоприобретенных свойств, ассимиляцией условий внешней среды и т. д. и т. д.

В нашей литературе наиболее основательно эту точку зрения отстаивал крупный ихтиолог и географ Л. С. Берг. Он, правда, называл свои воззрения не ламаркизмом, а номогенезом (эволюцией на основе закономерностей, то есть закономерных, а не случайных изменений). Но хотя в своей книге, вышедшей в 1922 году, Берг решительно отрекся от ламаркизма, никого это не обмануло. Уже тогда оппоненты Берга поняли, что ламаркизм и номогенез различаются лишь терминологией.

Ибо, по Бергу, наследственные изменения захватывают массы особей, идут направленно и должны быть изначально целесообразными, приспособительными. Берг, как и Ламарк, вообще считал приспособительные реакции изначальным свойством живого.

Современные номогенетики как‑то стыдливо обходят последний тезис Берга, предпочитая говорить лишь о направленности наследственных изменений, а не о целесообразности их. Но направленные мутации должны быть приспособительными – ведь все организмы на Земле к каким‑то условиям приспособлены.

Мне доводилось слышать выступление физика, в котором выдвигалась такая идея. Мутации сами по себе вредны или нейтральны и обеспечить эволюцию материалом не могут. Движущая сила эволюции – приспособительные изменения, которые происходят крайне редко (например, раз в тысячу лет). Из‑за их редкости мы их обнаружить не можем, поэтому все опыты, опровергающие приспособительное изменение генетических программ, оказываются бездоказательными.

Но физик должен был бы понять, что номогенез, или ламаркизм, – называйте, как хотите, – основан на нарушении принципа причинности. Следствие (приспособленность) в нем определяет причину (изменение генетической программы). И опять мы возвращаемся к Аристотелю с его конечной причиной и целью одновременно. Такие взгляды на эволюцию, называются телеологическими.

Для меня представляется совершенно непостижимым, что в наши дни находятся вполне серьезные ученые, не понимающие того, что было предельно ясно еще в прошлом веке Герцену. Вспомните его «Былое и думы»:

 

«Естествоиспытатели, хвастающие своим материализмом, толкуют о каких‑то вперед задуманных планах природы, о ее целях и ловком избрании средств… Это – фатализм в третьей степени, в кубе; на первой кипит кровь Януария, на второй орошаются поля дождем по молитве, на третьей открываются тайные замыслы химического процесса, хвалятся экономические способности жизненной силы, заготовляющей желтки для зародышей и т. п.».

 

Сказано как будто про наших современных номогенетиков. Я уже писал об этом подробнее в другой своей книге[7]. Здесь, пожалуй, будет довольно нескольких примеров того, как направленная приспособительная изменчивость вступает в противоречие с принципом причинности.

Допустим существование неких актов приспособления, чрезвычайно редких и потому ненаблюдаемых. Нет проще приема сделать их наблюдаемыми. Надо лишь увеличить число наблюдений. Пример из той же физики: нейтрино взаимодействует с веществом с чрезвычайно низкой вероятностью, эта элементарная частица может пронизать насквозь земной шар, и вероятность того, что она вступит в реакцию с каким‑либо ядром, совершенно ничтожна. Но физики уверенно детектируют нейтрино и антинейтрино. Детектор здесь – большое количество атомов хлора (обычно в составе той жидкости, которая применяется в химчистке – тетрахлорэтилена). А источник искомой частицы – ядерный реактор, испускающий мощные потоки нейтрино.

 

Рис. 36. Супруги Ледерберги выращивали в чашках Петри на поверхности агара тысячи колоний бактерий, а затем стерильным бархатным штампом переносили их с сохранением прежнего положения в другие чашки, где среда содержала смертельную дозу антибиотика. Если число пересеваемых колоний было достаточно велико, всегда находилась хотя бы одна, устойчивая к антибиотику. При этом нетрудно было убедиться, что материнская колония также состоит из устойчивых бактерий, хотя с антибиотиками они и не встречались.

 

Американские исследователи Джошуа и Эстер Ледерберги исследовали процесс приспособления бактерий к антибиотикам. Этот феномен – проклятие современной медицины. Прославленные пенициллин, стрептомицин, олеандомицин быстро теряют свою эффективность Нужно сказать, что помогают микробам в данном случае и врачи со слабой биологической подготовкой. Они прописывают больным недостаточные дозы (из боязни «как бы чего не вышло»), то есть фактически ведут в популяциях бактерий отбор на устойчивость к антибиотику. Или же, наоборот, впадают в другую крайность и закармливают пациента антибиотиками при пустяковой простуде, а в результате тот же антибиотик окажется недейственным при двустороннем воспалении легких. Вспомните о переносах генов плазмидами и бактериофагами! Ген, определяющий, например, устойчивость бактерии к стрептомицину, легко может быть передан даже бактериям другого вида. В последнее время возникла серьезная проблема с гноеродными золотистыми стафилококками – современный врач с набором антибиотиков оказался в положении хирурга прошлого века, бессильного перед послеоперационными осложнениями. Выход в одном – все время обновлять арсенал антибиотиков, по возможности обгоняя бактерий.

Но вернемся к Ледербергам. Они взяли несколько сот чашек Петри с питательным агаром и посеяли на них культуру бактерий, чувствительных к антибиотику. На тех местах, где на поверхность питательного студня попадали бактерии, эти бактерии начинали расти, делиться, и через некоторое время агар покрывался колониями, скоплениями бактерий, выросших из одной клетки‑родоначальницы. Исследовали сразу сотни и тысячи колоний, что увеличивало шансы на обнаружение редко наблюдаемого эффекта.

Затем Ледерберги запаслись несколькими сотнями штампов – кружков, равных по диаметру чаше Петри и обтянутых бархатом. Штампы стерилизовались в автоклаве, чтобы не занести в культуры чего‑нибудь лишнего. Затем стерильный штамп прикладывался к поверхности агара; в каждой колонии часть бактерий прилипала к ворсинкам бархата. А затем штамп прикладывался к поверхности агара в другой чашке.

Но этот агар уже содержал антибиотик, причем в концентрации, смертельной для данных бактерий.

И «отштампованные» на его поверхности колонии бактерий перестали развиваться и погибли. Но была подмечена любопытная закономерность: если колоний достаточно много, среди них обязательно найдется хотя бы одна, которая приживется на ядовитом агаре и будет разрастаться, как ни в чем не бывало.

Казалось бы, ясно: произошло направленное целесообразное изменение по Ламарку или же Бергу. Правда, неясно, почему приспособилась лишь одна колония из многих, но это уже деталь.

Но колонии переносились на агар с антибиотиком штампами с сохранением прежнего положения. Поэтому мы всегда можем найти материнскую колонию и убедиться, что она также состоит из бактерий, устойчивых к антибиотику! Приспособление возникло до того, как на популяцию подействовал фактор– антибиотик Налицо явное нарушение принципа причинности. Следствие предшествует причине. Но если мы примем, что подобные изменения генетических программ возникают в результате чисто случайных процессов и в некоторых случаях оказываются полезными, никакого нарушения не будет. Но это уже не ламаркизм или номогенез, а отбор случайных мутаций по Дарвину.

 

Рис. 37. Когда в Англии для борьбы с крысами стали применять антикоагулянт варфарин, очень скоро появились устойчивые к нему популяции «суперкрыс». Эта карта опубликована в 1970 году. Через два года пришлось бы залить красным цветом всю территорию Великобритании. Таково могущество отбора, пусть бессознательного.

 

Второй пример касается уже высших организмов. Когда в практику борьбы с крысами вошли антикоагулянты, дератизаторам, то есть крысоловам, показалось, что наступает золотой век. У крыс, поевших приманки с варфарином, кровь переставала свертываться, и животные погибали от милейшей царапины, например из‑за песчинки, задевшей стенку кишечника. И вдруг везде, где применяли коагулянты, появились популяции крыс, которые на этой отраве благоденствовали. Их назвали суперкрысами.

Приспособление по Ламарку или отбор мутации по Дарвину? Генетики быстро установили, что гены, дающие носителю устойчивость к антикоагулянтам, имелись в популяциях крыс задолго до их внедрения, они встречаются и там, где варфарина и прочих подобных препаратов никогда не применяли. Но встречаемость их крайне низка: у таких крыс повышена способность крови свертываться, и они часто гибнут от тромбов, закупорки кровеносных сосудов. Применение антикоагулянтов произвело среди крыс полную переоценку ценностей: прародителями суперкрыс стали немногочисленные особи – носители этих прежде невыгодных генов.

Из этого примера, кстати, становится ясным, что широко распространенное мнение о вредности мутаций, ненаправленных изменений генетических программ, попросту неверно. Нет мутаций во всех условиях вредных, как нет и безусловно полезных. Все попытки расклассифицировать мутации без учета данных конкретных условий обречены на провал.

Вот еще примеры с нарушением принципа причинности. На севере пресмыкающиеся, в частности змеи, редки. У нас Полярный круг переходит только обыкновенная гадюка благодаря специальному приспособлению. У северных гадюк развитие яиц начинается еще в яйцеводах, так что они рождают уже вполне сформированных змеенышей. А вот африканские примитивные гадюки откладывают яйца. Самая крупная наша гадюка – гюрза – также живородящая, но в южных районах Средней Азии откладывает яйца.

Налицо явное приспособление, повышающее скорость развития яиц в условиях прохладного климата с резкими суточными изменениями температуры. Беременная гадюка большую часть дня проводит где‑нибудь в защищенном от ветра месте на припеке, отчего температура ее тела поднимается до 28°, а на ночь скрывается в какой‑нибудь расщелине или под корнями деревьев. Фактически она превращается в инкубатор. Несомненно, для будущих гадючат этот признак полезен. А вот полезен ли он самой гадюке? Позволительно усомниться: ведь она лежит на открытом месте, так что ее может схватить любой канюк или аист, да и обмен у «разогретой» змеи идет куда быстрее, так что требуется больше пищи. Энергетически это невыгодно.

Как и все признаки, повышающие вероятность выживания у потомства, но бесполезные и даже вредные для родителей, это свойство гадюки необъяснимо с точки зрения прямого приспособления. Разве что неродившиеся змееныши передают по какому‑то каналу информации своей будущей маме: «Мама, чтобы мы выжили, не спеши откладывать яйца, в которых мы развиваемся». По‑видимому, дело обстоит проще: шел отбор на закрепление в популяции этого признака, возникшего случайно.

Еще более наглядны примеры из жизни растений. Как вы знаете из школьного курса, для высших растений характерно чередование поколений. Размножающийся спорами спорофит порождает растение, продуцирующее половые клетки – гаметы (гаметофит). Если у папоротников и плаунов гаметофит самостоятельное, хотя и редуцированное растение, у цветковых он паразитирует на спорофите. То, что мы видим у дуба и фиалки, сосны и кактуса, это все спорофит. А гаметофит – это части цветка: завязь и пыльцевые зерна. Мужской гаметофит – пыльцевое зерно – состоит всего‑то из трех клеток!

А теперь посмотрите на цветок лютика. Лепестки его, принадлежащие спорофитному поколению, образуют идеальной формы рефлектор, концентрирующий солнечные лучи на пыльниках и завязи, чтобы быстрее развивался гаметофит. Опять приспособительный признак, пригодный для будущего, некое «воспоминание о будущем» и необъяснимый с точки зрения прямого приспособления. Разве что мы наделим цветок способностью предвидеть и солидными знаниями оптики и физической химии.

Подытожим все сказанное. Случайные, ненаправленные и неприспособительные изменения генетических программ (мутации) – непреложный факт, доказанный тысячами разных способов. Теперь мы знаем их молекулярные механизмы и уверенно повышаем частоту их возникновения. Не можем лишь одного – вызывать направленную нужную нам мутацию. Но, как мы должны были бы убедиться, это невозможно до тех пор, пока мы не знаем структур и функций всех генов в клетке и не научимся изменять один ген, не изменяя остальных. В природе без вмешательства человека это невозможно принципиально.

Почему же до сих пор есть люди, яростно борющиеся с неопровержимыми фактами?

Вероятно, по той простой причине, что не могут принять идею случайных изменений («Старик не играет в кости»!).

И по той же причине номогенез (в смягченном, ретушированном, но сохранившем всю свою сущность виде) поддерживается некоторыми исследователями до наших дней. «Наука – враг случайностей», все должно быть закономерно. А то, что такие подходы, мягко говоря, философски беспомощны, номогенетиков не волнует. Лишь бы не принять в качестве источника материала для эволюции случайный процесс. От теории требуется, чтобы она объясняла, почему на земле должны быть кошки и мыши и почему мыши должны прятаться от кошек в норы.

О подобных взглядах иронично писал Энгельс («Диалектика природы», очерк «Случайность и необходимость»): «Если тот факт, что определенный стручок заключает в себе шесть горошин, а не пять или семь, представляет собою явление того же порядка, как закон движения солнечной системы или закон сохранения энергии, то на деле не случайность поднимается до уровня необходимости, а необходимость снижается до уровня случайности». По большому счету эволюции наличие на Земле кошек и мышей столь же случайное событие, как наличие в стручке шести или семи горошин, и бессмысленно выводить его из свойств протопланетной туманности.

Мутации: много их или мало? Не так давно казался существенным вопрос: много или мало мутаций изменяет генетические программы? Физик Эльзассер полагал, что их чересчур много, настолько, что ДНК просто не может быть хранителем наследственной информации. Эту роль он отводил неким нематериальным «биотоническим законам».

Конечно, доказать мутацию в результате действия нематериального фактора трудно, но еще труднее доказать самое его существование. Поэтому перевес был на стороне другой гипотезы: мутаций слишком мало чтобы они могли обеспечить должную скорость процесса эволюции.

Действительно, мутация каждого отдельно взятого гена происходит с довольно низкой частотой (10–4…10–8). Многих к тому же удивлял один непонятный факт: у микроорганизмов мутации отмечались реже, чем у высших организмов. Но дело в том, что у бактерий и геном меньше. Легче набрать без опечаток газету, чем книгу достаточно большого объема. Когда пересчитали частоту мутаций на единицу содержания ДНК в геноме, скорости мутагенеза у всех земных организмов практически совпали.

Представление о том, что мутаций недостаточно для объяснения темпов эволюции, кажется очень привлекательным для врагов «всяческих случайностей». Оно проникло даже в научно‑фантастическую литературу: в одном (не из лучших) рассказе люди далекого будущего усердно помогают эволюции на других планетах – ведь природных мутаций недостаточно! Автор не ведал, что представление, которое он принял за научную истину, самое фантастическое в его рассказе.

Рассмотрим этот вопрос подробнее. Да, мутации наблюдаются в природе довольно редко. Чтобы повысить их частоту, селекционеры применяют мутагены, лучи Рентгена и кобальтовые пушки. И все‑таки вспомним длинный список факторов, повреждающих ДНК, приведенный в начале этой главы. Если принять, что изменения идут только в результате отщепления пуриновых оснований, при случайных изменениях температуры и pH, то простой расчет показывает: даже при этом клетки каждого человека теряли бы 50 тысяч нуклеотидов в сутки! За 70 лет жизни человек потерял бы 40 процентов всех пуриновых оснований. Ясно, что мы пришли к абсурду. При таком темпе он просто не дожил бы до 70 лет, а погиб еще в утробе матери. На деле люди порой вдвое перекрывают этот возраст и умирают отнюдь не из‑за недостатка пуринов.

Следует прийти к выводу, что генетические программы заложенные в каждом из нас, чрезвычайно помехоустойчивы. Стабильность их определяется отнюдь не химической инертностью, а целым рядом особенностей структуры и специальными системами, которые отфильтровывают помехи или корректируют опечатки – как вам угодно – на каждом новом поколении клеток.

Первый из механизмов борьбы с помехами, самый простой, но не самый эффективный, – повторение, дупликация. Вспомним, что у каждого из нас в клетках по два генных набора, от отца и от матери.

Если в одном из них произошла мутация по важному гену, мы можем этого и не заметить: ген второго набора компенсирует мутацию и она в фенотипе не проявится, но только до тех пор, пока оба одинаково поврежденных гена не встретятся в одной оплодотворенной яйцеклетке. Вероятность этого повышается при близкородственном скрещивании. Недаром законодательства всех стран запрещают браки между близкими родственниками.

У полиплоидов геном напоминает тот разговор двух судовых радистов, о котором я уже вспоминал. Однако этот механизм очень уж прямолинеен и ведет к большим затратам и осложнениям. Практичнее дублировать не весь геном, а лишь наиболее важные его части. Так оно и есть, важнейшие последовательности ДНК представлены у высших организмов многими десятками, а то и сотнями копий, например те гены, в которых кодируются ядерные белки – гистоны. Примечательно, что многократно дублированы в основном не структурные гены, кодирующие белки, а регуляторные. Структурные гены в основной своей массе уникальны. Это имеет глубокий смысл: изменение каждого белка имеет шанс проявиться в фенотипе, чтобы пройти оценку на полезность в горниле эволюционных процессов. А вот регуляторные системы обязательно должны сработать, предоставить этот шанс структурному гену. Поэтому они должны быть многократно дублированы.

 

Рис. 34. Наверху – некоторые мутации глаз плодовой мушки дрозофилы. Генетикам очень повезло, что у нее, как и других двукрылых в клетках слюнных желез имеются гигантские хромосомы. Они поперечно исчерчены; каждая полоска в первом приближении соответствует одному гену. Удалось показать, что мутация Ваг, более чем вдвое снижающая число фасеток в глазу, обусловлена удвоением, дупликацией одного гена. Если же ген утраивается (мутация ультра‑Ваг) фасетки практически редуцируются.

 

Этого мало. На заре эволюции, в эпоху становления генетического кода, триплеты ДНК кодировали аминокислоты, по всей вероятности, не столь жестко как сейчас. В результате возник весьма помехоустойчивый механизм кодирования аминокислот тройками нуклеотидов, особенности которого описаны советским биофизиком М. В. Волькенштейном. Можно сравнить принципы построения генетического кода с пишущей машинкой Остапа Бендера. Как вы, конечно, помните, машинка конторы по заготовке рогов и копыт имела кавказский акцент: у нее не было буквы «е», и ее пришлось заменять буквой «э» (…приложэниэ. Бэз приложэний). Почему же великий комбинатор заменил «е» буквой «э», а не какой– либо другой? Это всем понятно: подбиралась буква, наиболее близкая по звучанию. Другая бы искажала смысл слова.

Нечто подобное происходит при мутациях структурных генов. Генетический код устроен таким образом, что во многих случаях смысл триплета не изменяется (кодируется та же аминокислота) или изменяется незначительно. А что значит – незначительно? Снова грамматическая аналогия. Буквы бывают гласные и согласные. Аминокислоты и остатки их, слагающие белки, делятся на полярные и неполярные.

Отличаются они по взаимодействию с молекулами воды – полярные аминокислоты, такие, как лизии, гистидин, аргинин и другие, притягивают молекулы H2O, «смачиваются» водою. Неполярные аминокислоты, такие, как глицин или же аланин, более гидрофобны, они отталкивают молекулы воды и охотнее взаимодействуют друг с другом.

Чередованием полярных и неполярных аминокислот в белке определяется его третичная структура. Неполярные остатки слипаются друг с другом полярные взаимодействуют с водой и в результате образуется сложная форма, порой напоминающая творение скульптора‑абстракциониста. С той лишь разницей, что она содержательна: строго соответствует выполняемой этим белком функции.

А что будет, если в результате мутации полярный остаток в белке сменится на неполярный (или наоборот)? Форма молекулы может измениться настолько, что белок не сможет выполнять свою функцию. Гемоглобин не будет связывать кислород, фермент не сможет ускорять химическую реакцию, и организм, носитель данной мутации, скорее всего, погибнет.

Тем, что это происходит относительно редко, мы обязаны хитроумному устройству генетического кода. Еще тогда, когда между аминокислотами в белке и тройками нуклеотидов в нуклеиновой кислоте не было жесткого соответствия (орфография еще не установилась!), эволюция отобрала наиболее помехоустойчивый вариант. Прочие конкуренции с ним не выдержали и сошли с жизненной арены.

Как справляется с помехами генетический код? Возьмем для примера какую‑нибудь аминокислоту. Аланин в матричной РНК может кодироваться четырьмя символами:

ГЦУ, ГЦЦ, ГЦА, ГЦГ. Нетрудно сообразить, что любая замена третьей «буквы» в кодоне не изменит его смысла, в белок включится тот же аланин. Но есть и другие аминокислоты, кодируемые меньшим числом триплетов (например, аспарагиновая. и глутаминовая). Оказалось, что за исключением тех случаев, когда в результате мутации возникает бессмысленный кодон, полярность аминокислотного остатка не меняется. Значит, не изменится существенно и форма белковой молекулы, и ее пригодность для выполнения функции. Несмотря на ошибку, «прочесть» инструкцию можно. Чем не машинка Остапа Бендера?

В общем, из 526 возможных замещений (опять же не считая бессмысленных, обрывающих синтез белка), 364, более чем две трети, не меняют полярность аминокислотного остатка. Хуже, если мутация захватывает не один, а два, а то и три нуклеотида, но вероятность таких мутаций много меньше.

Но самое интересное я, как обычно, оставил под конец. Ведь и резервные гены, и особенности кодирования, снижающие эффект мутации, в конечном счете – пассивные средства борьбы с помехами. У генетических программ всех организмов, начиная с бактерий и кончая человеком, есть весьма действенные механизмы активной защиты. Такие процессы называются репарационными.

Репарация ДНК активно защищает генетическую программу клетки от повреждений. Рассмотрим один из ее механизмов на конкретном примере.

Ультрафиолетовые лучи – мощный мутагенный фактор. Наиболее часто они вызывают характерные мутации – сшивки двух соседних пиримидиновых оснований (Ц и Т). Такие сшитые основания не могут быть транскрибированы в мРНК, и процесс дупликации ДНК на них также кончается.

 

Рис 35. Организм активно защищает свои генетические программы от внешних воздействий. Допустим, на участке ДНК (1) возникло повреждение. Квант ультрафиолета, проникнув в ядро, вызвал сшивку двух соседних пиримидиновых оснований, возник димер тимина (2). ДНК с таким дефектом не может работать, синтезировать себя или РНК. Молекулы ферментов ДНК– и РНК‑полимераз, дойдя до сшивки, застрянут на ней, как застревает замок застежки‑«молнии», если в нее попала нитка. Но не все потеряно, на помощь приходят ферменты‑репаразы. Эндонуклеаза «отстригает» поврежденный участок (3–4), а брешь в двойной спирали достраивается другим ферментом, ДНК‑полимеразой, по оставшейся комплементарной нити‑матрице. Достроенный отрезок пришивается к старой последовательности ферментом лигазой. Этот процесс также активируется светом, но более длинноволновым (300–600 нанометров). Так что, если хотите сохранить свои генетические программы в целости, не загорайте на пляже, а грейтесь у камина.

Репаразы «ремонтируют» участки ДНК, к которым присоединились молекулы мутагенов, разрывы нитей и ошибки спаривания. В норме остаются лишь доли процента возникающих мутаций, но и этого достаточно, чтобы обеспечить материалом эволюцию.

 

И тогда на помощь приходят ферменты‑репаразы. Они выстригают кусок с повреждением, и в двойной нити ДНК образуется брешь. Матрицей для заполнения бреши служит сохранившийся кусок комплементарной последовательности, по ней строится участок взамен поврежденного и пришивается к старой нити особым ферментом‑лигазой. Любопытно, что эта тонкая портняжная работа активируется светом, но не ультрафиолетовым, а более длинноволновым излучением, вплоть до инфракрасного (для человека – 300–600 нанометров). Так что с точки зрения охраны генетических программ гораздо полезнее греться у камина, чем загорать на пляже

Репарация лечит также места, где из ДНК флуктуациями температуры и pHвырваны пурины участки последовательностей, прореагировавшие с мутагенами, ошибочно спаренные нити ДНК, а так же однонитевые разрывы, обусловленные жесткой радиацией.

А если повреждение захватило обе нити? Здесь работа сложнее, но репарация справляется и с такими дефектами. Описаны случаи репарации, по крайней мере, части двунитевых разрывов и поперечных сшивок нитей ДНК.

По‑видимому, репарирующие системы исправляют не менее 99 процентов всех возникающих мутаций, делая жизнь вообще возможной. Тем самым вопрос о недостаточности мутаций для объяснения эволюционного процесса снимается: мутаций не много и не мало, а ровно столько, сколько их пропускает репарационный барьер.

Почему же репаразы иногда не срабатывают? Во‑первых, гены кодирующие их синтез, также подвержены мутациям. В таких случаях резко возрастает скорость всех прочих мутаций, особенно хромосомных разрывов («синдром ломкости хромосом»). Во‑вторых, ни одна система, подобно наборщикам и корректорам суворинского издательства, не может работать абсолютно безошибочно . В‑третьих, система репараз рассчитана на некий средний уровень помех, но ведь некоторые помехи подвержены флуктуациям и часть организмов неизбежно попадает в условия, когда репарация не справляется. К сожалению, в наших современных условиях, когда резко возрос радиационный фон, а воздух, вода и пища насыщены мутагенами система репараций работает на пределе. Самое страшное, что может ожидать (и сделать с собой) человечество – это термоядерная война. Ее наши репарационные системы, вне всякого сомнения, не выдержат. И поджигатели войны, если не захотят обречь себя на пожизненное заключение в атомоубежищах будут вынуждены выйти в обреченный на гибель мир, где даже крысы будут отравлены.

В течение более чем трех миллиардов лет процесс эволюции создавал чудесный механизм, способный поддерживать свою структуру и передавать ее из поколения в поколение. Было бы чудовищным преступлением перед самой жизнью уничтожить его в считанные минуты ядерного катаклизма.

В конечном счете применение ядерного оружия – война против будущих, еще не появившихся на свет поколений. И не только ядерного оружия. Вспомним одну из самых позорных страниц американской войны во Вьетнаме. Под предлогом уничтожения джунглей как убежища партизан американская военщина сбросила на многострадальную вьетнамскую землю около 80 миллионов литров ядов.

Я не знаю формулы этого яда; известно только его условное название – оранжевый, «ориндж» – по цвету контейнеров. Но, по‑видимому, это сильнейший мутаген из разряда супермутагенов – типа нитрозоэтилмочевины или же производных иприта. До сих пор тысячи километров вьетнамской земли остаются мертвыми, на них вырастают лишь уродливые, неизбежно погибающие деревья. В той или иной мере яд попал в организмы не менее десяти процентов населения Вьетнама, сотни тысяч женщин бесплодны или же рождают на свет больных детей с аномалиями развития. «Ориндж», как бумеранг, ударил и по агрессорам: у тысяч бывших американских и австралийских солдат до сих пор рождаются дети‑уроды. По всей вероятности, мутаген вызывает множественные аберрации, поломки хромосом.

Эта мрачная быль хорошо иллюстрирует проблему: «много мутаций или мало». Как вы видите, малейшее превышение мутационного фона тяжело сказывается на судьбах популяций. Помехоустойчивость генетических программ не беспредельна: она достигла оптимума (без поправки на человеческие деяния).

В заключение рассмотрим несколько гипотетических положений из разряда: «Что было бы, если бы…» Так вот, что было бы, если бы генетические программы обладали стопроцентной стабильностью и никакие факторы, как внешние, так и внутренние, не могли нарушить структуру генов?

Ясно, что эволюция в таком случае не могла бы начаться: она не имела бы для себя материала. И мы до сих пор пребывали бы на стадии простейших организмов. Более того, сомнительно, чтобы мы даже дошли до этой стадии. Есть все основания полагать, что отбор случайных изменений – не только двигатель эволюции жизни, но и причина ее становления. Без мутаций отбор бессилен.

Это, кстати, существенный довод против возможности существования во Вселенной каких‑либо кремниевых или металлических форм жизни. Субстрат для нее должен быть достаточно лабилен, жизнь всегда идет по лезвию бритвы.

А если бы все мутации прекратились сейчас и все генетические программы стали бы стабильными? Остановилась бы тогда эволюция?

Не спешите с ответом. Дело в том, что все высшие организмы в норме имеют двойной набор хромосом, двойной набор генов. Мутации обычно проявляются в признаках фенотипа лишь в том случае, если унаследованы и от отца и от матери.

Совокупности генотипов популяций всех организмов, размножающихся половым путем (генофонды), хранят огромный запас мутировавших тогда‑то генов. Его хватит еще на тысячи поколений, даже если генетические структуры не будут больше изменяться. Так что эволюция высших организмов не остановится.

А бактерии? У них только один набор генов, нет запасов «генетической памяти». Но, обмениваясь друг с другом генами через плазмиды и вирусы, они также могут успешно продолжать свою странную эволюцию – приспособление без прогресса.

А теперь перейдем к последней, четвертой аксиоме биологии.

 

 

Из второго начала термодинамики, о котором говорилось в начале этих очерков, вытекает чрезвычайно важное следствие: нельзя получить энергию только отнимая у какого‑либо тела тепло. При этом нужно нагревать какое‑то другое тело.

Помню, как вблизи экватора мы поднимали с километровой глубины большой батометр: из него потекла ледяная вода, а на поверхности температура была за тридцать. После вахты я на досуге стал изобретать некий генератор энергии. Состоять он должен был, насколько помню, из двух радиаторов, соединенных двумя трубами километровой длины. Легкокипящая жидкость, наподобие фреона, вскипала в верхнем, плавающем на поверхности моря, радиаторе; пары ее, прокрутив по дороге турбину, конденсировались в нижнем. Такой генератор охлаждал бы поверхностную воду и прогревал глубинную. Не будь солнца, он, конечно, остановился бы, как только температуры наверху и внизу сравнялись. Система пришла бы в равновесное, самое вероятное состояние. Теплота самопроизвольно не может переходить от холодного тела к менее холодному. Наоборот – пожалуйста.

Но теплота – это кинетическая энергия хаотически движущихся молекул. Система «паровой котел – холодильник» с разницей температур менее вероятна, чем система, во всех частях которой средняя кинетическая энергия слагающих ее молекул одинакова. Во втором случае максимума достигает энтропия – так называют омертвленную энергию, которую нельзя превратить в работу. А энтропию физики определяют как логарифм вероятности состояния системы. Хаос вероятнее структуры – люди понимали это всегда. Именно ясным сознанием того, что порядок не может возникнуть из беспорядка, объясняется столь раннее становление двух противоборствующих теорий развития – преформизма и эпигенеза (смотри аксиому первую). Но, пожалуй, лишь великий физик Людвиг Больцман в прошлом веке выразил это количественно.

И невозможность создания вечного двигателя второго рода, при работе которого возникает, а не выравнивается разность температур (или давлений, или электрических потенциалов), стала уже следствием более общего закона самопроизвольного перехода порядка в беспорядок.

Все мы знаем, что для наведения порядка в квартире или хотя бы на письменном столе требуется затратить какую‑то долю энергии. А вот беспорядок возникает сам, его специально создавать не нужно.

Чтобы построить жилище – от первобытной хижины до высотного дома, – люди затрачивали уйму энергии. А судьба их творений, если их предоставить самим себе (то есть не тратить энергии на поддержание структуры), была одинаковой: они рассыпались, превращаясь в бесформенные, но зато более вероятные с точки зрения термодинамики груды строительных материалов. Энергия, затраченная на их сооружение, в конце концов переходила в энергию теплового движения молекул, омертвлялась.

А сами структуры наших тел? Не начинают ли они в среднем после 50 лет постепенно распадаться, уступая непреложному росту энтропии? В конечном счете все успехи геронтологии лишь чуть‑чуть затормаживают этот процесс. Об этом хорошо сказал Омар Хайам:

 

В этом мире ты мудрым слывешь?

Ну и что?

Всем пример и совет подаешь?

Ну и что?

До ста лет ты намерен прожить?

Допускаю.

Может быть, до двухсот проживешь.

Ну и что?

 

Есть, по меньшей мере, добрая сотня гипотез (по некоторым подсчетам, их более двухсот) объясняющих, что такое старость и как с нею бороться. Я с трудом удерживаюсь от желания добавить к ним сто первую, которая кажется мне наиболее обоснованной. Но сейчас не это является нашей задачей. Мы должны понять, что второе начало термодинамики требует постепенного разрушения генетических программ наших клеток. Случайные, непредсказуемые и равнодушные к судьбам организмов изменения генетических программ приводят к нарушению стройного порядка поддержания фенотипов. «Жить значит умирать» (Ф. Энгельс).

Но этого мало. Ведь клетки – предшественники гамет (яйцеклеток и спермиев) – также подвержены мутациям, которые, буде это случится, перейдут в следующее поколение. Дети передадут их внукам добавлением новых (вспоминаются древнеримские стихи: «Отцы были хуже, чем деды – нас негодных вырастили»). Получается, что игра в испорченный телефон от поколения к поколению в конце концов приведет к полному разрушению структур наших организмов, торжеству энтропии.

Итак, мы пришли как будто к печальному выводу: хаос побеждает структуру. Случайные, ненаправленные изменения генетических программ должны, накапливаясь из поколения в поколение, разрушать и сами программы, и те фенотипы, которые этими программами кодируются.

Если бы вывод был только печален. Но ведь он и неверен! Все мы отлично знаем, что структуры живых организмов сохраняются от поколения к поколению. Более того, мы знаем, что в ходе эволюции шло непрерывное усложнение структур. Два миллиарда лет назад на Земле обитали лишь бактерии и синезеленые водоросли. Каких‑нибудь 200–300 миллионов лет спустя появляются организмы с оформленным ядром, пока еще простейшие одноклеточные, примитивные грибки. А дальше – кишечнополостные, черви, моллюски. 500 миллионов лет назад на сцену жизни выходят хордовые. «Век рыб» сменяется «веком земноводных», затем «веком рептилий» и, наконец, на высшие ступени в биосфере выходят млекопитающие, затем человек. Где же здесь победа энтропии?

Да и подчиняется ли живая природа второму началу?

Демон Максвелла. Чтобы решить эту проблему, вернемся назад. В прошлом веке великий физик Максвелл предложил поставить мысленный эксперимент. Представьте себе, говорил Максвелл, трубку, заполненную разреженным газом. Трубка посредине разделена перегородкой. В перегородке есть заслонка, дверца. Допустим, что у этой заслонки сидит некоторое существо (или устройство), различающее молекулы по скоростям. Пусть это существо (демон) открывает заслонку перед быстрыми молекулами и закрывает перед медленными, то есть сортирует их по энергиям.

В результате отбора, производимого демоном, быстрые молекулы соберутся в одной половине трубки, а медленные в другой. Один конец устройства разогреется, другой охладится. Общая энергия устройства останется прежней, так что первое начало термодинамики (закон сохранения энергии) мы не нарушим. Но система перешла от более вероятного состояния к менее вероятному. Демон получил разность температур, позволяющую совершить работу, в обход второго начала термодинамики.

На рисунке показана схема, позволяющая воссоздать парадокс

 

 

Максвелла. Соберите электрическую цепь с диодом (или иным выпрямителем), пропускающим ток только в одном направлении. Свободные электроны в металле находятся в состоянии хаотического теплового движения (электронный газ). Как и во всяком газе, в нем возникают флуктуации мы их не видим, но слышим как шипение и потрескивание в динамике приемника (там они усиливаются, и они‑то как раз являются помехой слабого сигнала). Диод должен сыграть роль демона: пропуская электроны в одну сторону, он создает разность потенциалов, за счет которой можно выполнить работу.

Собрать такую схему в школьном кабинете физики – минутное дело. Еще быстрее мы убедимся, что диод не желает быть демоном – ток в схеме не возникает. Причина? Вернемся к примеру с разреженным газом в трубке. За неимением демона снабдим заслонку какой‑нибудь пружиной, которая позволит дверце открываться только после удара быстро движущейся молекулы с высокой энергией. Дверца откроется, чтобы пропустить молекулу, но при этом отнимет у нее энергию на деформацию пружины! В случае с электронами роль пружины выполняет сопротивление диода.

А если у нас все‑таки есть демон? Допустим его существование, ведь эксперимент у нас мысленный. Можно допустить даже и то, что на открывание заслонки энергия не расходуется. Но каким образом наш привратник узнает, какую молекулу надо пропустить, а какую нет? Он должен знать скорость молекул, непрерывно получать информацию об их координатах в каждый момент времени. Но информация не дается даром: Л. Бриллюэн показал, что затраты на различение молекул с лихвой компенсируют возможный прирост энергии. Как не вспомнить шутливое замечание о том, что первое начало термодинамики утверждает, что в игре с природой нельзя выиграть, а второе – что нельзя даже остаться «при своих». На атомно‑молекулярном уровне отбор оказывается невозможным.

А в живой природе? Тут вступает в действие принцип, который Н. В. Тимофеев назвал принципом усилителя. Правильнее называть его принципом усиления так как под словом «усилитель» обычно подразумевают какое‑либо устройство, специально созданное для этой цели. Понять его действие можно из примера, приводимого В. А. Ратнером. Допустим, мы имеем оплодотворенную яйцеклетку – носительницу мутации какого‑нибудь гена, кодирующего важный для жизни фермент. В процессе роста и развития организма яйцеклетка превратилась в миллион миллиардов клеток (1015). Соответственно умножились гены. Каждый ген продуцирует, допустим, сто молекул мРНК и на каждой молекуле мРНК синтезируется в среднем сто молекул фермента. Наконец, каждая молекула фермента в минуту осуществляет, скажем, 10 000 актов какой‑либо реакции. Итак, 1015•102•102•104= 1023. Вам, должно быть, известно число Авогадро: количество молекул в моле примерно равно 6 • 1023. Вот насколько усиливаются результаты одного‑единственного квантового скачка одной мутации!

Это уже ощутимые количества, с которыми может работать демон. И такой демон существует – это естественный отбор, «демон Дарвина» , как удачно его назвал известный биохимик, популяризатор и фантаст Айзек Азимов. Именно отбор пропускает в следующее поколение организмы со структурой, не слишком сильно измененной, или с изменением, дающим повышенные шансы на выживание и дальнейшее размножение. Если преимущество обеспечивается усложнением организации – что же, демон Дарвина отберет и пропустит через свою «заслонку» в будущее чрезвычайно редкие варианты, такие, которые редки, как сверхбыстрые молекулы в газе. Так идет прогрессивная эволюция.

Значит ли это, что жизнь не подчиняется второму началу термодинамики, что она не повышает, а понижает энтропию? Высказались и такие мнения. Но это заблуждение. Жизнь нарушает второе начало не большей мере, чем радиоприемник. Все мы по печальному опыту знаем, что банальный транзистор, приняв невообразимо слабый сигнал, может его усилить до такой степени, что возникнет опасность для барабанных перепонок соседей. Но на это затрачивается свободная энергия батареек. Она расходуется, в частности, на преодоление сопротивления диодов и прочих элементов, превращаясь в тепло – хаотическое движение молекул. Из‑за угла снова выглядывает ухмыляющаяся энтропия.

В жизни то же самое. Растения утилизируют лишь немногие проценты падающей на них солнечной энергии (не более двух процентов) Растительноядные животные усваивают не больше 10 процентов энергии пищи, хищники, находящиеся на концах пищевых цепей, – и того меньше. Коэффициент полезного действия жизни существенно меньше КПД первых паровозов Стефенсона. Ничего не поделаешь – на усиление требуется энергия. Жизнь вообще и человек в первую очередь в той же мере снижает энтропию Солнечной системы, в какой карманный воришка повышает национальный доход. Один перераспределяет энтропию, другой – деньги в свою пользу, а в окружающей их среде количество энтропии соответственно возрастает, а денег – уменьшается.

Важно подчеркнуть, что отбор действует не прямо на измененные генетические программы, а на фенотипы, в которых каждое изменение в миллиарды миллиардов раз усиливается.

Вот мы и подошли к формулировке четвертой аксиомы.