Современные воззрения на структуру атома и строение вещества

Открытие электрона Э. Вихертом и Дж. Дж. Томсоном (1897 год) и радиоактивности А. Беккерелем (1896 год) стали доказательством делимости атома, возможность которой стала обсуждаться после выдвижения У. Праутом гипотезы о протиле (1815 год). Уже в начале XX века появились первые модели строения атома: «кексовая» (У. Томсон, 1902 год и Дж. Дж. Томсон, 1904), планетарная (Ж. Б. Перрен, 1901 год и Х. Нагаока, 1903 год), «динамидическая» (Ф. Ленард, 1904). В 1911 Э. Резерфорд, основываясь на опытах по рассеиванию α-частиц, предложил ядерную модель, ставшую основой для создания классической модели строения атома (Н. Бор, 1913 год и А. Зоммерфельд, 1916). Основываясь на ней, Н. Бор в 1921 заложил основы формальной теории периодической системы, объяснившей периодичность свойств элементов периодическим повторением строения внешнего электронного уровня атома. После того, как В. Паули сформулировал принцип запрета (1925), а Ф. Хунд предложил эмпирические правила заполнения электронных оболочек (1925—1927), была в целом установлена электронная структура всех известных к тому времени элементов.

После открытия делимости атома и установления природы электрона как его составной части возникли реальные предпосылки для разработки теорий химической связи. Первой стала концепция электровалентности Р. Абегга (1904), основанная на идее о сродстве атомов к электрону. Модель Бора — Зоммерфельда, представления о валентных электронах (И. Штарк, 1915) и идея об особой стабильности двух- и восьмиэлектронных оболочек атомов инертных газов легли в основу классических теорий химической связи. В. Коссель (1916) разработал теорию гетерополярной (ионной) связи, а Дж. Н. Льюис (1916) и И. Ленгмюр (1919) — теорию гомеополярной (ковалентной) связи.

В конце 20-х — начале 30-х годов XX века сформировались принципиально новые — квантово-механические — представления о строении атома и природе химической связи.

Исходя из идеи французского физика Л. де Бройля о наличии у материальных частиц волновых свойств, австрийский физик Э. Шрёдингер в 1926 году вывел основное уравнение т. н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой системы и их изменение во времени. Несколько ранее немецкий физик В. Гейзенберг разработал свой вариант квантовой теории атома в виде матричной механики.

Квантово-механический подход к строению атома привёл к созданию новых теорий, объясняющих образование связи между атомами. Уже в 1927 году В. Г. Гейтлер и Ф. Лондон начали разрабатывать квантовомеханическую теорию химической связи и выполнили приближённый расчет молекулы водорода. Распространение метода Гейтлера-Лондона на многоатомные молекулы привело к созданию метода валентных связей, который создают в 1928—1931 гг. Л. Полинг и Дж. К. Слэтер. Основная идея этого метода заключается в предположении, что атомные орбитали сохраняют при образовании молекулы известную индивидуальность. В 1928 году Полинг предложил теорию резонанса и идею гибридизации атомных орбиталей, в 1932 году — новое количественное понятие электроотрицательности.

В 1929 году Ф. Хунд, Р. С. Малликен и Дж. Э. Леннард-Джонс заложили фундамент метода молекулярных орбиталей, основанного на представлении о полной потере индивидуальности атомов, соединившихся в молекулу. Хунд создал также современную классификацию химических связей; в 1931 году он пришёл к выводу о существовании двух основных типов химических связей — простой, или σ-связи, и π-связи. Э. Хюккель распространил метод МО на органические соединения, сформулировав в 1931 году правило ароматической стабильности, устанавливающее принадлежность вещества к ароматическому ряду.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами; кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности. Создание надёжного теоретического фундамента привело к значительному росту возможностей прогнозирования свойств вещества. Особенностью химии в XX веке стало широкое использования физико-математического аппарата и разнообразных расчётных методов.

Подлинным переворотом в химии стало появление в XX веке большого числа новых аналитических методов, прежде всего физических и физико-химических (рентгеноструктурный анализ, электронная и колебательная спектроскопия, магнетохимия и масс-спектрометрия, спектроскопия ЭПР и ЯМР, хроматография и т. п.). Эти методы предоставили новые возможности для изучения состава, структуры и реакционной способности вещества.

Отличительной чертой современной химии стало её тесное взаимодействие с другими естественными науками, в результате которого на стыке наук появились биохимия, геохимия и др. разделы. Одновременно с этим процессом интеграции интенсивно протекал и процесс дифференциации самой химии. Хотя границы между разделами химии достаточно условны, коллоидная и координационная химия, кристаллохимия и электрохимия, химия высокомолекулярных соединений и некоторые другие разделы приобрели черты самостоятельных наук.

Закономерным следствием совершенствования химической теории в XX веке стали новые успехи практической химии — каталитический синтез аммиака, получение синтетических антибиотиков, полимерных материалов и т. п. Успехи химиков в деле получения вещества с желаемыми свойствами в числе прочих достижений прикладной науки к концу XX столетия привели к коренным преобразованиям в жизни человечества.

4 Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся ввеществе.

Дано: Решение:

m(Na)=6,4г 6Na+2H3PO4=2Na3Po4+3H2

найти

m(H2)

 

5 Элемент кислород находится во втором периоде шестой группе главной подгруппе.

О ) )

+8 2 6

1s22s22p4

Элемент кислород образует две аллотропные модификации: кислород О2 и озон О3. (аллотропия – это способность атома одного элемента образовывать несколько простых веществ.). озон более сильный окислитель, чем кислород. Применяется для дезинфекции питьевой воды, при отбеливании тканей и минеральных масел. В атмосфере Земли озоновый слой (на высоте 25 – 30 км) защищает живой мир от космического УФ-излучения. Слой разрушается под воздействием оксидов азота.

 

Кислород – газ, без цвета, без запаха, малорастворим в воде. В жидком состоянии голубой, в твёрдом – синий, tкип. = - 1830С, tпл. = - 218,70С.

O2 при взоимодействие с металлами и сложные в-вами является о-лем.Исключение взаимодействия со F2.

СН₄ + О₂ = СО₂ + 2Н₂О

С⁻⁴ - 8 е = С⁺⁴
О₂° + 4 е = 2О⁻²

 

6 Водород – первый элемент в периодической системе. Он находится в первом периоде первой группе главной подгруппе.

Н +

1s1.

Водород проявляет во всех соединениях валентность 1, возможные степени окисления: - 1, 0, + 1. как элемент с характерной степенью окисления + 1 водород располагается в I группе.

Учитывая способность водорода существовать в форме двухатомных молекул Н2 и проявлять степень окисления – 1, водород ставят в седьмую группу главную подгруппу.

В природе существует три изотопа водорода: 1Н – водород, 2Н – дейтерий (1Н : 2Н = 6800 : 1), 3Н – тритий (радиоактивный; на земле 2 кг).

H2 при взаимодействии с металлом является окислителем .

Химические свойства:

1. При комнатной температуре водород химически малоактивен. Без нагревания реагирует только со фтором: Н2 + F2 = 2HF. С кислородом и хлором реагирует при поджигании: 2H2 + O2 = 2H2O;
H2 + Cl2 = 2HCl. С серой водород реагирует при нагревании до 150 – 2000С: H2 + S = H2S.
В жёстких условиях водород реагирует с азотом с образованием аммиака: 3H2 + N2 = 2NH3.

 

1. При нагревании водород реагирует с некоторыми металлами, образуя гидриды:
Са + Н2 = СаН2-1.

 

1. Водород способен восстанавливать железо и менее активные, чем железо металлы из их оксидов: Fe3O4 + 2H2 = 3Fe + 2H2O CuO + H2 = Cu + H2O.

 

Удобно получать кислород в лаборатории из пероксида водорода:

2 H2O2 = 2 H2O + O2
пероксид водорода катализатор     кислород

Интересен способ получения кислорода из пероксидов металлов, который раньше применяли на подводных лодках, потому что одновременно с выделением кислорода происходит поглощение углекислого газа:

2 Na2O2 + 2 CO2 = 2 Na2CO3 + O2
пероксид натрия   углекислый газ   сода   кислород

На современных атомных подводных лодках, где имеется мощный и почти неисчерпаемый источник электрической энергии, есть возможность получать кислород разложением воды под действием электрического тока (электролизом воды):

2 H2O = 2 H2 + O2
  электрический ток водород   кислород

Как получить оксиды из простых веществ? Их окислением:

 

2Mg + O2 = 2MgO, 2C + O2 = 2CO, C + O2 = CO2.

Можно ли получить оксиды из оксидов? Да:

 

2SO2 + O2 = 2SO3, 2SO3 = 2SO2 + O2, Fe2O3 + CO = 2FeO + CO2.

 

Можно ли получить оксиды из гидроксидов ? Да:

 

Ca(OH)2 CaO + H2O, H2CO3 = CO2 + H2O.

 

Можно ли получить оксиды из солей ? Да:

 

CaCO3 CaO + CO2, 2Cu(NO3)2 = 2CuO + 4NO2 + O2.

Получение кислот производят с помощью следующих химических реакций:

- взаимодействие кислотных оксидов с водой:

SO3 + H2O = H2SO4;

CO2 + H2O = H2CO3;

- взаимодействие с солями:

NaCl + H2SO4(конц.) = HCl + Na2SO4 - при этой химической реакции образуется новая более слабая кислота (более слабая, чем серная, но тоже сильная) и другая соль;

- взаимодействие неметаллов с водородом с последующим растворением их в воде:

H2 + Cl2 = HCl (Надо помнить, что само по себе данное химическое соединение - газ хлороводород HCl кислотой не является. Для её образования необходимо полученный газ HCl растворить в воде).

1. Термическое разложение. CaCO3 = CaO + CO2
2Cu(NO3)2 = 2CuO + 4NO2 + O2
NH4Cl = NH3 + HCl

2. Гидролиз. Al2S3 + 6H2O = 2Al(OH)3 + 3H2S
FeCl3+ H2O = Fe(OH)Cl2 + HCl
Na2S + H2O = NaHS +NaOH

3. Обменные реакции с кислотами, основаниями и другими солями.
AgNO3 + HCl = AgCl + HNO 3
Fe(NO3)3 + 3NaOH = Fe(OH)3 + 3NaNO 3
CaCl2 + Na2SiO3 = CaSiO3 + 2NaCl
AgCl + 2Na2S2O3 = Nа3[Ag(S2O3) 2] + NaCl

4. Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона. 2KMnO4 + 16HCl = 2MnCl2 + 2KCl+5Cl2 +8H2O


2.Химические свойства кислых солей:

1. Термическое разложение с образованием средней соли
Ca(HCO3)2 = CaCO3 + CO2 + H2O

2. Взаимодействие со щёлочью. Получение средней соли.
Ba(HCO3)2 + Ba(OH)2 = 2BaCO3 + 2H2O

нерастворимых оснований

Pb(NO3)2 + 2NaOH = Pb(OH)2 + 2NaNO3

MgCl2 + 2KOH = Mg(OH)2 + 2KCl

FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4