Усиление ба­лок затяжками

Quot;Включаем" в ра­боту усиливающую конструкцию

Общие принципы усиления несущих конструкций

При всем разнообразии приемов усиления все они базируются на двух принципах — уменьшении усилий (изгибающих моментов, продоль­ных и поперечных сил) в конструк­ции или увеличении ее несущей способности. В первом случае кон­струкцию разгружают (т. е. переда­ют всю или часть нагрузки на дру­гую — усиливающую — конструк­цию). Разгружение зачастую осуще­ствляют за счет изменения расчет­ной схемы существующей конструк­ции (например, превращают балку из однопролетной в двухпролетную, подводя под нее дополнительную опору). Во втором случае увеличи­вают (наращивают) сечение конст­рукции или увеличивают сопротив­ление материала (например, за счет поперечного обжатия). Конечно, та­кое разделение достаточно услов­но — часто в одном приеме усиле­ния используют оба принципа.

После завершения строительно-монтажных операций по усилению усиливающая конструкция должна сразу же, как только начала при­кладываться дополнительная нагруз­ка, воспринимать причитающуюся ей часть этой нагрузки (усилий, напря­жений), т. е. деформироваться со­вместно с усиливаемой конструкци­ей, — это и называется включени­ем ее в работу. В противном слу­чае разрушение усиливаемой кон­струкции может произойти раньше, чем усиливающая начнет воспри­нимать свою долю нагрузки.

Например, если под железобе­тонную балку в середине пролета подвести дополнительную жесткую опору в виде стойки и оставить меж­ду ними зазор, то балка при увели­чении нагрузки будет в состоянии прогибаться (а значит, в ней будет расти и изгибающий момент) до тех пор, пока зазор не исчезнет (рис. 1). Рост изгибающего момента, в конце концов, может привести к раз­рушению балки — все зависит от величины зазора. Поэтому при под­ведении дополнительных опор зазо­ры необходимо устранять — подклиниванием стальными пластинами, подливкой бетона или др. способа­ми. Только тогда опоры будут вклю­чены в работу.

 

 

 

Почему усиление целесо­образно проводить при мини­мальном значении эксплуатацион­ных нагрузок?

Для ответа на этот вопрос рас­смотрим упомянутый выше пример усиления балки (рис. 2). Если до­полнительную опору подводить тог­да, когда на балку действует мак­симальная эксплуатационная нагруз­ка q и, следовательно, максималь­ный изгибающий момент Мmax(а), то опора работать не будет, усилие в ней будет равно нулю. Она смо­жет выполнить лишь противоаварийную задачу — удержать балку от обрушения. Если с балки снять часть нагрузки (б), то от оставшейся час­ти q1 в балке возникает изгибаю­щий момент М1. После подведения опоры и приложения ранее снятой нагрузки q2 балка начнет работать как двухпролетная и в ней возник­нет дополнительный момент М2(в). Сумма этих моментов М(г) даст на­много меньшее значение, чем Мmax. Понятно, что суммарная величина моментов будет тем меньше (а на­грузка на усиливающую конструк­цию тем больше), чем больше вели­чина снятой нагрузки q2?

Правда, в данном примере не следует впадать в другую крайность. Можно перед усилением так раз­грузить балку (д), что в итоге в се­редине пролета возникнет отрица­тельный момент, который балка вос­принять будет не в состоянии из-за недостаточного (или отсутствия) ар­мирования верхней зоны, и вместо усиления балки произойдет ее раз­рушение. Поэтому при проектиро­вании усиления всегда следует при­держиваться правила: новая эпюра моментов не должна выходить за пределы эпюры материалов существующей конструкции.

 

 

Подклинка зазоров между усиливающей и уси­ливаемой конструкциями

В этом деле опасно переусерд­ствовать. При сильной забивке стальных пластин возникают боль­шие расклинивающие усилия, при­чем усилия неконтролируемые, ко­торые могут вызвать в усиливаемой конструкции опасные для нее изги­бающие моменты. Особенно осто­рожно следует проводить усиление многопролетных неразрезных балок. Если при усилении балки одного из пролетов создать большое раскли­нивающие усилие, то в соседних пролетах изгибающие моменты воз­растут, что может привести балки в аварийное состояние, — такие слу­чаи в практике усиления встреча­ются. Поэтому толщину стальных клиньев (пластин) следует подбирать в соответствии с фактическими за­зорами и забивать их легкими уда­рами молотка.

Необходимо помнить и о том, что в опорах (стойках) из монолитного железобетона или каменной кладки будут происходить усадочные про­цессы, особенно интенсивные в пер­вые дни. Поэтому подклинивание зазоров нужно производить не ра­нее чем через неделю после воз­ведения опор, а передачу дополни­тельной нагрузки — после набора бетоном или кладкой проектной прочности.

Отличие жестких опор от упругих

Жесткие — это опоры, которые не деформируются под нагрузкой (рис. 3, а). Упруго проседающими, или просто упругими, называются опоры, которые деформируются (про­седают) под нагрузкой вместе с са­мой конструкцией (рис. 3, б). Де­формации упругих опор зависят от величины нагрузки, от жесткости опирающейся конструкции (напри­мер, балки) и от жесткости самих опор. Чем меньше жесткость опо­ры, тем меньше опорная реакция R, тем меньше разгружается опираю­щаяся конструкция.

 

К жестким опорам обычно отно­сят стойки (колонны) из кирпича, железобетона или металла, подко­сы и т. п. элементы, которые подво­дят под усиливаемые конструкции и деформации которых настолько малы, что ими можно пренебречь. Одна­ко подобные опоры имеют один су­щественный недостаток — они пе­регораживают помещения. Кроме того, опоры в виде стоек требуют устройства самостоятельных фунда­ментов. При этом следует иметь в виду, что основание под фундамен­том в свою очередь подвергается деформациям (осадкам), в резуль­тате которых нагрузка на стойку уменьшается, а изгибающие момен­ты и поперечные силы в усиленной балке возрастают. Во избежание этого необходимо под подошвой фундамента либо предварительно обжимать грунт, либо устраивать большую песчано-щебеночную по­душку. Поэтому, несмотря на всю простоту подобного усиления, его применяют довольно редко.

Указанных недостатков лишены портальные рамы (рис. 4), стальные балки (рис. 5), фермы (рис. 6), шпренгели и некоторые другие уси­ливающие конструкции. В процессе нагружения они подвергаются за­метным деформациям (прогибам) совместно с усиливаемой конструк­цией (пунктирные линии на рисун­ках), которыми пренебречь нельзя, не допустив грубейшую ошибку. Поэтому дополнительные опоры, ко­торые образуют подобные конструк­ции, относятся к упругим.

 

 

Эффективность усиления стальными балками

Подведение стальных балок под железобетонные балки или плиты — довольно распространенный прием усиления. Основан он на принципе частичного разгружения — стальная балка является дополнительной (уп­ругой) опорой и берет на себя часть полезной нагрузки. Однако эффек­тивность такого усиления, как пра­вило, невелика. Сечения стальных балок проектировщики зачастую подбирают простым суммированием несущих способностей усиливаемой и усиливающей балок: если суще­ствующая балка (плита) в состоя­нии воспринимать только часть рас­четного изгибающего момента М, то сечение стальной балки подби­рают из условия восприятия недо­стающей части.

Такой подход ошибочен по двум причинам. Во-первых, стальная бал­ка включается в работу не с само­го начала, а со времени приложе­ния дополнительной нагрузки. Чем меньше разгружена железобетонная балка (плита), тем менее эффектив­но работает стальная балка. Во-вторых, доли совме­стно воспринимаемой нагрузки оп­ределяются не несущими способ­ностями сечений, а совместными де­формациями (прогибом f). Поэтому дополнительная нагрузка распреде­ляется пропорционально жесткостям существующей и усиливающей кон­струкций.

Повышение эффектив­ности усиления изгибаемых эле­ментов стальными балками

Чтобы повысить эффективность работы стальных усиливающих ба­лок, нужно создать предварительное напряжение: усиливающую (сталь­ную) балку частично нагрузить, а усиливаемую (железобетонную) ча­стично разгрузить — еще до того, как будет приложена дополнитель­ная внешняя нагрузка.

Выполнить предварительное на­пряжение можно разными способа­ми. Один из них — оттянуть сталь­ную балку книзу (прогнуть) с помо­щью подвешенных грузов, а в обра­зовавшиеся между ней и железо­бетонной балкой зазоры вставить металлические распорки (пластины или пакеты из листов). После сня­тия грузов стальная балка стремит­ся вернуться в исходное состояние (выпрямиться), но железобетонная этому препятствует. В результате, усиливающая балка нагружена си­лами, направленными сверху вниз, в усиливаемая — теми же силами, направленными снизу вверх (рис. 7). Правда, при этом часть преднапряжения стальной балки теряет­ся.

Потери напряжений можно ис­ключить, если подобную операцию осуществлять с помощью гидродом­кратов, устанавливаемых на усили­вающую балку, с контролем уси­лий в них по манометру. При таком способе происходит одновременный выгиб железобетонной балки и про­гиб стальной. Более простой спо­соб — использование вместо домк­ратов натяжных или упорных бол­тов, усилия в которых контролиру­ются по величине взаимного сме­щения f (суммы выгиба и прогиба) железобетонной и стальной балок (рис. 8).

Здесь не были упомянуты поте­ри от обмятия контактных поверх­ностей, неизбежные при любом преднапряжении. При проектирова­нии усиления их принимают обыч­но равными 20% начальной вели­чины преднапряжения.

Приведенный пример показыва­ет, что усиление можно выполнять и без разгружения железобетонной конструкции, если создать в ней усилия обратного знака за счет предварительного напряжения уси­ливающей конструкции.

Работа шпренгеля

Шпренгель — это стержневая конструкция, в которой за счет со­вместных деформаций с усиливае­мой железобетонной конструкцией возникает растягивающее усилие Р. Его горизонтальная проекция — рас­пор N'=N—Т (где T — сила тре­ния при перегибе стержней) созда­ет положительный (загружающий) изгибающий момент Мо=N'·е, а вертикальные проекции D — отри­цательный (разгружающий) момент Мp. Кроме того, в опорных участках возникают и разгружающие попе­речные силы Qp, в результате чего суммарные усилия ΣM и ΣQ оказы­ваются меньшими, чем усилия Мq и Qq от внешней нагрузки.

Целесообразно, казалось бы, концы шпренгеля опустить до уров­ня нейтральной оси усиливаемой балки, исключить образование в ней М0 и повысить, тем самым, эффек­тивность усиления. Однако ожида­емого результата это не даст, по­скольку одновременно уменьшатся значения D. Можно передвинуть весь шпренгель книзу, тогда и зна­чения D сохранятся и M0 поменяет знак с положительного на отрица­тельный. Но в этом случае суще­ственно усложняется конструкция шпренгеля, а сам он уменьшает полезный объем здания, поэтому такое решение широкого примене­ния не нашло (а в зданиях с крана­ми вообще исключено).

В качестве шпренгельной затяж­ки используют стержневую арматур­ную сталь больших диаметров, а при необходимости — и прокатные про­фили из уголков или швеллеров. Как и в случае со стальными балками , эффективность ра­боты шпренгелей без предваритель­ного напряжения весьма невелика. Опыт проектирования показывает, что если шпренгели включить в ра­боту даже с самого начала (т. е. установить их при полностью сня­той полезной нагрузке), то разгру­зить железобетонные балки они в состоянии всего на 5...20%.

Рассчет шпренгелей

Требуемую величину распора N определяют из величины требуемо­го уменьшения изгибающих момен­тов и поперечных сил на величину соответственно Мp и Qp (рис. 9). Далее необходимо найти, какая часть этого распора приходится на совместные деформации шпренгеля с балкой, а какая часть — на его преднапряжение. Точный расчет здесь довольно сложен, поскольку связан с поворотом торцов и лини­ей прогибов балки, зависящих от схемы нагрузки, изгибной жесткости балки, осевой жесткости шпренгеля и др. факторов. Поэтому с достаточ­ной для практики точностью пользу­ются приближенным расчетом: N = [(Mtot-M)/h+σspAss]γ £ 0,8 RsAss, где Мtot (на рис. 9)

обозначен как Мq и М1 — изгибающие моменты после и до усиления, h — стрела провеса шпренгеля (плечо между N и N'), σsp — величина преднапряже­ния шпренгеля, Ass — площадь сече­ния стержней шпренгеля,

γss = 0,8 — коэффициент, учитывающий потери напряжений от обмятия контактных поверхностей, 0,8 — коэффициент ус­ловий работы стали. Приравняв выше найденную величину распора к это­му выражению, можно определить величину усилия предварительного натяжения, а из нее и площадь се­чения стержней шпренгеля. Если уси­ление проводится при действии пол­ной нагрузки на балку, то первое слагаемое в квадратных скобках ста­новится равным нулю и все усилие N создается только за счет пред­напряжения шпренгеля. Саму балку после усиления рассчитывают по прочности как внецентренно сжатый элемент на действие сжимающей силы N' (распора за вычетом потерь от трения при перегибе) и изгибаю­щего момента ΣМ.

 

Продольные затяжки в виде ар­матурных стержней или прокатных профилей располагают вдоль рас­тянутой грани балок и закрепляют на торцах. Под воздействием внеш­ней нагрузки балка прогибается, а ее опорные сечения (торцы) пово­рачиваются (рис. 10). При повороте торцы увлекают за собой затяжку, удлиняют ее и вызывают в ней рас­тягивающее усилие, которое, в свою очередь, действует на балку в виде сжимающей силы Р. От этой силы в балке возникает разгружающий момент Мp=-Ре, где е — расстоя­ние от силы Р до центра тяжести сечения. В отличие от усиления шпренгелем, поперечные силы здесь не уменьшаются и разгружение опорных участков (наклонных сече­ний) не происходит.

Чем больше снято нагрузки с балки до начала усиления, тем боль­ше последующие углы поворота тор­цов, тем больше и усилие Р. Разу­меется, при этом требуется зара­нее устранить (выбрать) начальную слабину затяжки. Но даже и при условии полного предварительного снятия нагрузки напряжения в за­тяжке достигнут небольшой величи­ны — как правило, не более 100 МПа. Ведь она работает как вне­шняя арматура без сцепления с бетоном, у которой растягивающие напряжения по длине постоянны, в то время как рабочая арматура балки в опасных сечениях испыты­вает куда более высокие напряже­ния. Поэтому в затяжках создают предварительное напряжение, кото­рое позволяет значительно увели­чить силу обжатия Р и, соответствен­но, увеличить разгружающий момент Mp.

Расчет затяжек можно выполнять приближенно. Из требуемой вели­чины разгружающего момента Mp находят величину Р, а далее из вы­ражения Р = [(100ΔMm/Mtot) + σsp] Assγss £ 0,8RsAss. находят требуемую площадь сечения Ass стержней за­тяжки, задавшись величиной их пред­варительного напряжения σsp. Здесь ΔMm и Мtot — величины соответственно дополнительного изгибающего момента, возникающего от прикла­дываемой после усиления нагрузки, и изгибающего момента от полной нагрузки (без учета Mp), γss=0,85 — коэффициент, учитывающий по­тери напряжений. Размерность в формуле приведена в Н и мм, при размерности в кг и см коэффици­ент 100 заменяется на 1 000.

Однако область применения за­тяжек относительно невелика, по­скольку реальное опирание конст­рукций существенно отличается от идеального. В частности, у однопролетных железобетонных балок пере­крытий и покрытий (а равно и ферм покрытий) в сборных каркасных зда­ниях опорные закладные детали при­варивают к закладным деталям ко­лонн, т. е. шарнирно-подвижные опо­ры у них отсутствуют. Это значит, что фактический поворот торцов меньше теоретического, а самое главное — расстояние между опо­рами, т. е. крайними точками нижней грани, остается неизменным. Поэтому даже предварительное на­пряжение затяжек такие конструк­ции практически не разгружает (по­чти все усилие Р передается не на растянутую зону, а на опорные зак­ладные детали). Столь же бессмыс­ленно усиливать затяжками много­пролетные неразрезные балки и балки (ригели) монолитных рамных каркасов.