Кусочно-линейное и кусочно-квадратичное интерполирование
Иногда, интерполирование по всей совокупности точек бывает не достаточным. В этих случаях можно воспользоваться объединением фрагментов графиков полиномов низкой степени и интерполированием между последовательными узлами. Самый простой в использовании полином первой степени. Он создает ломаную, состоящую из отрезков, которые проходят через две точки. Чтобы представить эту кусочно-линейную кривую, используется полином Лагранжа:
или используя формулу угла наклона отрезка линии в точке:
,
где - линейный сплайн на отрезке [xk+1, xk], yk – заданное значение функции, полученное экспериментально в заданных узлах. Аналогично можно построить кусочно-квадратичный полином.
Недостатком этого подхода является резкое изменение кривизны в общих узлах.
Пример:Для функции y=f(x), заданной таблично осуществить кусочно-линейное интерполирование и кусочно-квадратичное интерполирование.
x | 0,5 | ||||||
f(x) | 1,5 |
Решение:Осуществим кусочно-линейное интерполирование. Для этого разобьем данную функцию на элементарные промежутки, определяемые соседними числами верхней строки таблицы, и на каждом из участков строим прямую линию (полином первой степени), т.е.
Рис. 3.1. График полученного кусочно-линейного интерполирования.
Осуществим кусочно-квадратичное интерполирование. Для этого будем рассматривать тройки известных точек отрезков [0;1],[1;3],[3;5]. На каждом из этих отрезках по известным точкам построим полином второй степени. В результате получим:
Рис.3.2. График полученного кусочно-квадратичного интерполирования.