Парная регрессия и метод наименьших квадратов
Будем предполагать в рамках модели (2.2) линейную зависимость между двумя переменными Y и X. Т.е. имеем модель парной регрессии в виде:
Yi =a+bXi+ui, i=1,…,n.
а. Eui=0, i=1,…,n.
б.
в. X1, …, Xn – неслучайные величины.
Предположим, что имеется выборка значений Y и X.
Обозначим арифметические средние (выборочные математические ожидания) для переменных X и Y:
.
Запишем уравнение оцениваемой линии в виде:
, (2.6)
где и - оценки неизвестных параметров a и b, а - ордината этой линии.
Пусть (Xi, Yi) одна из пар наблюдений. Тогда отклонение этой точки (см. рис. 2.1) от оцениваемой линии будет равно ei=Yi - .
Принцип метода наименьших квадратов (МНК) заключается в выборе таких оценок и , для которых сумма квадратов отклонений для всех точек становится минимальной.
Y
|
| |||
X
Рис. 2.1. Иллюстрация принципа МНК
Необходимым условием для этого служит обращение в нуль частных производных функционала:
по каждому из параметров. Имеем:
Упростив последние равенства, получим стандартную форму нормальных уравнений, решение которых дает искомые оценки параметров:
(2.7)
Из (2.7) получаем:
(2.8)
Пример. Для иллюстрации вычислений при отыскании зависимости с помощью метода наименьших квадратов рассмотрим пример (табл. 2.1).