Выбор вида ур-ия регрессии с использ-ем теста Бокса-Кокса.

Исп-ие нелин-ых ур-ий для построения ур-ия регрессии значит-но повышает универс-сть регр-го анализа, но и усложняет задачу исслед-ля, т.к. усложняется проблема спецификации ур-ия регрессии. Если мы имеем дело с парной регрессией, то вид ур-ия м.б. решен (выбран) путем построения графика зависимости у = f(x) и по виду этого графика можно дост-но просто выбрать ур-ия. Однако в случае множ-ой регрессии такой подход практич-ки невозможен. В этом случае часто задача решется путем подбора подходящей функции и в качестве критерия оптим-ти используют коэф-т множ-ой детерминации R2, иногда сумма квадратов отклонений. Такой подход неправомерен, если сравниваются принципиально различ-е функц-ые зависимости. Н-р: лин-ая аддитивная модель (1)

мультипликтивная модель (2)

Использовать для срав-ия этих моделей сумму кавдратов отклонений невозм-но, т. к. lnyi ≠ yi, а значит-но < его

(3)

Величина R2 также не может быть использ-на, хотя она и безразмерна, т. к. она относ-ся к разным понятиям. В (1) она объясняет дисперсию у, объясн-ую дисперсией факториальных приз-ов (х1 и х2). Во (2) она объясняет дисперсию lny, вызванную дисперсией ln х1 или ln х2 . В тех случаях, когда R2 у одной модели значит-но >, чем у другой, тогда можно обоснованно осущ-ть выбор в пользу этой модели. Однако в тех случаях, когда R2 одной и др. модели соизмеримы др.с другом, то проблема выбора усложняется. В этом случае предлагается для выбора исп-ть тест Бокса-Кокса (это в общем случае). Для сравнения моделей (1) и (2) Пол Зарембко предложил упрощение теста Бокса-Кокса в 1968г. Суть теста в этом сл. след-ая:

1) исход-ые данные по у исп-ся для вычисления средней геометрической

2) значение у персчит-ся с исп-ем

3) исп-ие нов. знач-я у находим параметры (оценки) ур-ия (1). А исп-уя ln y’из ур-ия (3) нах-ся оценки ао12.Для этих двух моделей (1) и (3) нах-ся сумма квадратов отклонений. Эти суммы являются сопоставимыми и след-но та модель, которая дает меньшую сумму квадратов отклонений и признается лучшей.

4) для того, чтобы окончат-но решить вопрос, что действительно одна из моделей дает лучшее соответ-ие, рассчит-ся пок-ль:, где Т-число набл-й (n), Z-отнош-е ∑ кв. отклонений в 1 и 2 ур-ии. . Х2расч. сравнив-ся с табличным. Данное стат. распределение им. одну степень свободы и разное знач-е уровня значимости, если Х2расч. > Х2табл. при 5 %-значимости, то действ-но одна из моделей сущ-но лучше другой.