Индуцированные мутации
Спонтанная мутация
Мутации.
Вирусам, как и всем живым организмам, свойственны наследственность и изменчивость. На раннем этапе исследования генетики вирусов животных в основном заключались в сборе и последующей генетической и физиологической характеризации вирусных мутантов. В последнее время вирусные мутанты стали использовать в качестве специфических инструментов для исследования генетических и биохимических событий, происходящих в зараженной клетке. Работы такого рода с вирусами животных в целом запаздывали по сравнению с аналогичными работами на прокариотических системах.
Некоторые вирусы дают значительную долю мутантов при пассировании в отсутствие каких-либо известных мутагенов. Эти спонтанные мутации накапливаются в геномах вирусов и приводят к изменчивости фенотипа, которая является объектом селективного давления в ходе эволюции вируса.
Скорость спонтанного мутагенеза в ДНК-геномах значительно ниже (10 -8 - 10 -11 на каждый включенный нуклеотид), чем у РНК-геномных (10 -3 - 10 -4 на каждый включенный нуклеотид). Более высокая частота спонтанных мутаций связана с низкой точностью репликации РНК-геномов, которая вероятно связана с отсутствием у РНК-репликаз корректирующей активности, свойственной ферментам, реплицирующим ДНК. Наиболее часто спонтанные мутации наблюдаются у ретровирусов, что связано с более высокой частотой сбоев в обратной транскрипции, не способных к самокоррекции.
Таким образом, в то время как геномы ДНК-содержащих вирусов относительно стабильны, этого нельзя сказать об РНК-содержащих вирусах, К сожалению для генетиков, ряд факторов стимулирует неравновесие в популяции геномов, и эти факторы часто способствуют накоплению мутантов в популяции. Из-за спонтанного мутагенеза трудно поддерживать гомогенность популяции вируса. Для того чтобы обойти эту трудность, вирусы периодически реклонируют, однако мутанты часто возникают и в ходе образования бляшки, и в ходе роста вируса, поэтому бывает трудно получить генетически однородные препараты вируса с высоким титром.
Индуцированные мутации у вирусов получают при действии различных химических и физических мутагенов, которые подразделяют на действующие in vivo и in vitro .
Большая часть мутантов, выделенных в ходе исследования вирусов животных, получена из популяций дикого типа, обработанных мутагенами. Мутагены обычно применяют для того, чтобы увеличить частоту мутаций в популяции, после чего мутанты подвергают скринингу с помощью подходящего селективного давления. Основной проблемой, связанной с использованием мутагенов, является подбор подходящей дозы. Как правило, желательно получить мутанты, которые отличаются от дикого типа только одной мутацией. Для этого отбор ведут при наиболее низкой дозе мутагена, дающей достаточную частоту мутаций с желаемым фенотипом.
В системах с вирусами животных было использовано множество различных мутагенов, но все они входят в небольшое число классов, определяемых по механизму мутагенеза.
Мутагены одного класса, обычно называемые мутагенами in vitro, действуют путем химической модификации нуклеиновой кислоты, содержащейся в вирусной частице. Азотистая кислота дезаминирует основания, в первую очередь аденин, с образованием гипоксантина, который при последующей репликации спаривается с цитозином. В результате действия азотистой кислоты на аденин происходит транзиция от АТ-пары к GС-паре. Азотистая кислота дезаминирует также цитозин, приводя к транзиции CG—>-ТА. Другим мутагеном in vitro является гидроксиламин; он реагирует специфически только с цитозином и вызывает транзицию СG—>-ТА. Большой класс мутагенов in vitro представлен алкилирующими агентами, которые действуют на многие позиции в основаниях. Алкилирующие агенты — нитрозогуанидин, этанметансульфонат и ме-тилметансульфонат —являются мощными мутагенами.
Во второй класс входят мутагены in vivo, которые требуют для своего действия метаболически активной нуклеиновой кислоты.
Одна группа мутагенов in vivo содержит аналоги оснований, которые включаются в нуклеиновую кислоту в ходе синтеза по правилам нормального спаривания. Включившись, эти аналоги способны претерпевать таутомерные переходы, которые приводят их к спариванию с различными основаниями, вызывая таким образом транзиции и трансверсии. Часто используют аналоги: 2-аминопу-рин, 5-бромдезоксиуридин и 5-азацитидин.
В другую группу мутагенов in vivo включены интеркалирующие агенты, которые внедряются в стопку оснований, что при последующей репликации нуклеиновой кислоты приводит к вставкам или делециям.
Примерами интеркалирующих агентов являются акридиновые красители, такие как профлавин.
Ультрафиолет также иногда используют в качестве мутагена. Основным продуктом действия ультрафиолета являются димеры пиримидинов. В ДНК пиримидиновые димеры вырезаются. Для РНК механизм ультрафиолетового мутагенеза неизвестен.
Большинству мутаций присуще свойство возврата (реверсии) к дикому типу. Каждая мутация имеет характерную частоту реверсий, которую можно точно измерить.
Классификация вирусных мутаций.
Вирусные мутации классифицируют по изменениям фенотипа и генотипа. По фенотипическим проявлениям мутации вирусов разделяют на четыре группы:
· Мутации, не имеющие фенотипического проявления.
· Летальные мутации, т.е. полностью нарушающие синтез или функцию жизненно важных белков и приводящие к утрате способности к репродукции. Мутация является летальной, если вследствие ее нарушается, например, синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.
· Условно летальные мутации, т.е. мутации с потерей способности синтезировать определенный белок или с нарушением его функции только в определенных условиях. В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции в определенных, оптимальных для него, условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные (temperature sensitive) – ts-мутации, при которых вирус теряет способность размножения при повышенных температурах (39—42° С), сохраняя эту способность при обычных температурах выращивания (36—37° С).
· Мутации, имеющие фенотипическое проявление, например изменение размеров бляшек под агаровым покрытием или термостабильности, по изменению спектра хозяев, устойчивости к ингибиторам и химиопрепаратам.