Хромосомная теория наследственности.

В 1902-1903 гг. два исследователя - Саттон (из США) и Бовери (из Германии) – независимо друг от друга предположили, что задатки (гены) расположены в хромосомах. Эта идея положила начало созданию хромосомной теории наследственности. Термин «ген» был предложен позже (в 1909 г. Иоганнсеном). Параллелизм в поведении генов и хромосом в процессе образования гамет убедительно говорил о том, что гены расположены в хромосомах. В 1910 г. хромосомная теория наследственности получила свое дальнейшее развитие в опытах Нобелевского лауреата Т. Моргана и его сотрудников, которые привели новые доказательства справедливости этой теории, показав связь между конкретными генами и хромосомами. Окончательные доказательства были получены Бриджесом в 1913 г., открывшем изменения в наследовании признаков, сцепленных с полом, при нерасхождении половых хромосом.

Основные положения хромосомной теории наследственности следующие:

ü Гены локализованы в хромосомах;

ü Гены расположены в хромосоме в определенной линейной последовательности;

ü Гены наследственно дискретны;

ü Каждый ген имеет определенное место (локус) в хромосоме;

ü Гены относительно стабильны;

ü Гены могут изменяться (мутировать);

ü Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления;

ü Число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

ü Признаки, зависящие от сцепления генов, наследуются совместно;

ü Сцепление генов может нарушаться процессом кроссинговера, в результате образуются рекомбинантные хромосомы;

ü Частота кроссинговера является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

ü Частота кроссинговера зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);

ü Сцепление генов и кроссинговер позволяют производить картирование хромосом.

На современном этапе развития хромосомная теория наследственности получила дальнейшее развитие благодаря изучению тонкой структуры и функции генов про- и эукариот. Эволюционировали наши представления о гене как о неделимой структуре. Открыты дробные структуры эукариотических генов, механизмы их регуляции и т.д. созданные искусственные гены. Все эти знания позволили сформулировать один из фундаментальных принципов генетики о единстве дискретности и непрерывности генетического материала.

 

 

Рекомендации для решения задач:

 

1. Читая условие задачи, необходимо сразу заготовить схему решения данной задачи, записав с помощью общепринятых символов исходные данные.

2. Если первое поколение единообразно, то фенотипический признак доминантен.

3. Если родительские особи гомозиготы, то первое поколение единообразно.

4. Чистые линии (гомозиготы) дают всегда один сорт гамет.

5. Если особь имеет рецессивный фенотип, то она гомозигота рецессивная (аа).

6. Гетерозиготы дают всегда четное число гамет, которое определяется степенью гетерозиготности данной особи (например, тригетерозигота будет образовывать восемь типов гамет: 2 необходимо возвести в третью степень).

7. При скрещивании гибридов всегда наблюдается расщепление по изучаемым признакам, и, наоборот, если в поколении есть расщепление, то родительская)кие) особи с доминантным фенотипом – гетерозиготы.

8. При анализирующих скрещиваниях число образованных в поколении фенотипических классов указывает на число сортов гамет, образуемых гибридом, причем все фенотипические классы будут представлены равными пропорциями (1:1, 1:1:1:1 и т.д.).