Погрешность измерений

 

Функциональный анализ методики выполнения измерений (МВИ) проводят с целью выявления источников составляющих погрешности измерения, оценки их характера и значений.

Погрешностьюназывают отклонение результата измерений от действительного (истинного) значения измеряемой величины. При этом следует иметь в виду, что истинное значение физической величины считается неизвестным и применяется в теоретических исследованиях; действительное значение физической величины устанавливается экспериментальным путем в предположении, что результат эксперимента (измерения) в максимальной степени приближается к истинному значению. Погрешности измерений приводятся обычно в технической документации на средства измерений или в нормативных документах.

Методы выявления и оценки погрешностей можно разделить на аналитические (теоретические) и экспериментальные. В некоторых случаях используют смешанные методы (объединение теоретических и экспериментальных). Оценки погрешностей для типовых измерений обычно можно найти в информационных источниках.

В зависимости от характера и причин их появления погрешности измерений делятся на систематические и случайные.

Систематическойсоставляющей погрешности измерений называется погрешность, остающаяся постоянной при проведении серии измерений или изменяющаяся по определенному закону.

К случайной составляющей погрешности измерений относится та часть погрешности, которая изменяется от измерения к измерению случайным образом.

Систематическую составляющую погрешности измерений можно определить экспериментальным путем или устранить при проведении последующих измерений. Она зависит от целого ряда причин. Ели ориентироваться на причины, ее вызывающие, то можно дать следующую классификацию погрешностей этого типа:

· инструментальные погрешности, вызванные как конструктивными особенностями средств измерений, так и их установкой;

· методические погрешности, связанные с методом проведения измерений;

· климатические погрешности, обусловленные влиянием внешних условий;

· психологическиеили субъективные погрешности, возникновение которых связано с человеком, проводящим измерения.

Аналитические методы чаще всего используют для расчета инструментальных и методических составляющих погрешностей, а также погрешностей из-за несоответствия условий измерений нормальным. Для расчетов строят специальные модели.

***К инструментальным погрешностям относят все погрешности средств измерений и вспомогательных устройств: погрешности прибора, погрешности используемых для его настройки мер, погрешности устройств базирования приборов для линейно-угловых измерений, соединительных проводов для подключения электроизмерительных приборов и т.д. Инструментальные погрешности связаны с конструкцией и принципом действия применяемых средств измерения. Поскольку абсолютно точно изготовить детали не представляется возможным, то уже при создании прибора закладываются причины возникновения погрешности измерений. Инструментальную погрешность может вызвать неправильная градуировка измерительной шкалы, а также износ и старение материалов, особенно если они выполняют роль рабочих эталонов.

Аналитические расчеты средств измерений на точность проводятся для оценки их теоретических погрешностей и допустимых технологических погрешностей изготовления и сборки деталей, что является обязательными составными частями проектирования.

***Методические погрешностисвязаны с методикой проведения измерений. Используя один и тот же прибор, но разную методику измерений, можно получить данные, обладающие разной достоверностью.Методическиепогрешности возникают из-за принятых при измерении или обработке результатов теоретических допущений и упрощений, а также из-за несоответствия реального объекта измерений принятой модели. Оценку методической погрешности можно рассмотреть на примере измерения массы объекта взвешиванием (метод сравнения с мерой) на двуплечих весах. Для этого следует построить модель уравновешивания с учетом архимедовых сил, которые обусловлены вытеснением воздуха и объектом измерения, и гирями. Погрешности из-за несоответствия реального объекта измерений принятой модели можно рассматривать на примерах измерений длины, плотности, температуры и других физических величин. Так при измерении диаметра детали измерительной головкой на стойке методические погрешности могут быть обусловлены неидеальной формой номинально цилиндрической поверхности. Методическая погрешность при измерении седлообразной детали примерно равна отклонению образующей от прямолинейности.

***К климатическим погрешностямотносятся погрешности, вызванные влиянием факторов окружающей среды: давления, влажности воздуха, температуры, освещенности и т. д.

Погрешности из-за несоблюдения нормальных условийизмерений вызваны воздействием на измеряемый объект и средства измерений любой влияющей физической величины,выходящей за пределы области нормированных значений. Температурные, электромагнитные и другие поля, атмосферное давление, избыточная влажность, наличие вибраций и множество других факторов могут привести к искажению измеряемой величины и/или измерительной информации о ней. Для оценки погрешности "условий" в общем случае следует учитывать воздействие влияющих величин и на средства измерений, и на измеряемые объекты.

Для оценки влияния температуры на средства измерений необходимо проанализировать действие температуры на измерительную цепь, выявить те элементы, воздействие на которые приведет к искажению функции измерительного преобразования, и определить характер искажения. Этот путь часто оказывается непродуктивным, потому что для построения аналитической модели сложного средства измерений приходится задаваться множеством допущений, при этом не всегда удается обеспечить их достаточную строгость. Чаще прибегают к экспериментальной оценке погрешности.

***Психологическая погрешностьявляется следствием усталости проводящего измерения, его психологической настроенности на ожидаемый результат, индивидуальных черт характера, навыков к производству измерений.

Субъективныепогрешности могут включать погрешности отсчитываниярезультата и погрешности манипулированиясредствами измерений и измеряемым объектом (устройствами совмещения, настройки и корректировки нуля, арретирования, базирования накладного СИ или детали на станковом СИ). Для оценки погрешностей отсчитывания результатов с аналоговых приборов можно построить геометрическую модель образования погрешности из-за параллакса (если плоскости шкалы и указателя не совпадают), а также модели округления или интерполирования дольной части деления. Элементарная модель округления отсчета при положении указателя между отметками шкалы показывает, что в наихудшем случае (положение указателя точно посредине) погрешность округления не превысит половины цены деления (j) шкалы аналогового прибора, а при интерполировании дольной части деления "на глаз" будет еще меньше. В последнем случае более строгая аналитическая оценка невозможна, поэтому погрешность интерполирования оценивают экспериментальными методами или заимствуют из информационных источников.

Уровень полноты выявления и оценки составляющих погрешностей зависит от получаемой информации и может колебаться от оценки по шкале наименований до оценки по шкале отношений. Примерами качественных оценок по шкале наименований могут быть утверждение о наличии погрешности, возникающей из-за определенных причин, заключение о характере погрешности ("систематическая постоянная погрешность длины объекта при отличии его температуры от нормальной" или "прогрессирующая погрешность при монотонном изменении температуры объекта"). Использование шкалы порядка может выражаться, например, в оценках уровня значимости: составляющие погрешности второго порядка малости считают пренебрежимо малыми. Высшим уровнем оценок погрешностей будет получение их числовых значений.

Единство измерений не может быть обеспечено лишь совпадением погрешностей. Требуется еще и достоверность измерений, которая говорит о том, что погрешность не выходит за пределы отклонений, заданных в соответствии с поставленной целью измерений. Есть еще и понятие точности измерений, которое характеризует степень приближение погрешности измерений к нулю, т. е. к истинному значению измеряемой величины.

Обобщает все эти положения современное определение понятия единство измерений — состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешности известны с заданной вероятностью и не выходят за установленные пределы.